joekraper commited on
Commit
4fc4a92
·
0 Parent(s):

initial commit

Browse files
Files changed (6) hide show
  1. .gitignore +25 -0
  2. agent.py +210 -0
  3. app.py +209 -0
  4. metadata.jsonl +0 -0
  5. requirements.txt +18 -0
  6. system_prompt.txt +5 -0
.gitignore ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Environment variables
2
+ .env
3
+ .env.*
4
+ .env.local
5
+ .env.development
6
+ .env.production
7
+ .env.test
8
+
9
+ # Virtual environment
10
+ venv/
11
+ env/
12
+ .venv/
13
+
14
+ # Python cache files
15
+ __pycache__/
16
+ *.py[cod]
17
+ *$py.class
18
+
19
+ # IDE specific files
20
+ .vscode/
21
+ .idea/
22
+
23
+ # Local development files
24
+ *.log
25
+ .DS_Store
agent.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from dotenv import load_dotenv
3
+ from langgraph.graph import START, StateGraph, MessagesState
4
+ from langgraph.prebuilt import tools_condition
5
+ from langgraph.prebuilt import ToolNode
6
+ from langchain_google_genai import ChatGoogleGenerativeAI
7
+ from langchain_groq import ChatGroq
8
+ from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
9
+ from langchain_community.tools.tavily_search import TavilySearchResults
10
+ from langchain_community.document_loaders import WikipediaLoader
11
+ from langchain_community.document_loaders import ArxivLoader
12
+ from langchain_community.vectorstores import SupabaseVectorStore
13
+ from langchain_core.messages import SystemMessage, HumanMessage
14
+ from langchain_core.tools import tool
15
+ from langchain.tools.retriever import create_retriever_tool
16
+ from supabase.client import Client, create_client
17
+
18
+ load_dotenv()
19
+
20
+ @tool
21
+ def multiply(a: int, b: int) -> int:
22
+ """Multiply two numbers.
23
+ Args:
24
+ a: first int
25
+ b: second int
26
+ """
27
+ return a * b
28
+
29
+ @tool
30
+ def add(a: int, b: int) -> int:
31
+ """Add two numbers.
32
+
33
+ Args:
34
+ a: first int
35
+ b: second int
36
+ """
37
+ return a + b
38
+
39
+ @tool
40
+ def subtract(a: int, b: int) -> int:
41
+ """Subtract two numbers.
42
+
43
+ Args:
44
+ a: first int
45
+ b: second int
46
+ """
47
+ return a - b
48
+
49
+ @tool
50
+ def divide(a: int, b: int) -> int:
51
+ """Divide two numbers.
52
+
53
+ Args:
54
+ a: first int
55
+ b: second int
56
+ """
57
+ if b == 0:
58
+ raise ValueError("Cannot divide by zero.")
59
+ return a / b
60
+
61
+ @tool
62
+ def modulus(a: int, b: int) -> int:
63
+ """Get the modulus of two numbers.
64
+
65
+ Args:
66
+ a: first int
67
+ b: second int
68
+ """
69
+ return a % b
70
+
71
+ @tool
72
+ def wiki_search(query: str) -> str:
73
+ """Search Wikipedia for a query and return maximum 2 results.
74
+
75
+ Args:
76
+ query: The search query."""
77
+ search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
78
+ formatted_search_docs = "\n\n---\n\n".join(
79
+ [
80
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
81
+ for doc in search_docs
82
+ ])
83
+ return {"wiki_results": formatted_search_docs}
84
+
85
+ @tool
86
+ def web_search(query: str) -> str:
87
+ """Search Tavily for a query and return maximum 3 results.
88
+
89
+ Args:
90
+ query: The search query."""
91
+ search_docs = TavilySearchResults(max_results=3).invoke(query=query)
92
+ formatted_search_docs = "\n\n---\n\n".join(
93
+ [
94
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
95
+ for doc in search_docs
96
+ ])
97
+ return {"web_results": formatted_search_docs}
98
+
99
+ @tool
100
+ def arvix_search(query: str) -> str:
101
+ """Search Arxiv for a query and return maximum 3 result.
102
+
103
+ Args:
104
+ query: The search query."""
105
+ search_docs = ArxivLoader(query=query, load_max_docs=3).load()
106
+ formatted_search_docs = "\n\n---\n\n".join(
107
+ [
108
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
109
+ for doc in search_docs
110
+ ])
111
+ return {"arvix_results": formatted_search_docs}
112
+
113
+
114
+
115
+ # load the system prompt from the file
116
+ with open("system_prompt.txt", "r", encoding="utf-8") as f:
117
+ system_prompt = f.read()
118
+
119
+ # System message
120
+ sys_msg = SystemMessage(content=system_prompt)
121
+
122
+ # build a retriever
123
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
124
+ supabase: Client = create_client(
125
+ os.environ.get("SUPABASE_URL"),
126
+ os.environ.get("SUPABASE_SERVICE_KEY"))
127
+ vector_store = SupabaseVectorStore(
128
+ client=supabase,
129
+ embedding= embeddings,
130
+ table_name="documents",
131
+ query_name="match_documents_langchain",
132
+ )
133
+ create_retriever_tool = create_retriever_tool(
134
+ retriever=vector_store.as_retriever(),
135
+ name="Question Search",
136
+ description="A tool to retrieve similar questions from a vector store.",
137
+ )
138
+
139
+
140
+
141
+ tools = [
142
+ multiply,
143
+ add,
144
+ subtract,
145
+ divide,
146
+ modulus,
147
+ wiki_search,
148
+ web_search,
149
+ arvix_search,
150
+ ]
151
+
152
+ # Build graph function
153
+ def build_graph(provider: str = "huggingface"):
154
+ """Build the graph"""
155
+ # Load environment variables from .env file
156
+ if provider == "google":
157
+ # Google Gemini
158
+ llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
159
+ elif provider == "groq":
160
+ # Groq https://console.groq.com/docs/models
161
+ llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
162
+ elif provider == "huggingface":
163
+ llm = ChatHuggingFace(
164
+ llm=HuggingFaceEndpoint(
165
+ repo_id = "Qwen/Qwen2.5-Coder-32B-Instruct"
166
+ ),
167
+ )
168
+ else:
169
+ raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
170
+ # Bind tools to LLM
171
+ llm_with_tools = llm.bind_tools(tools)
172
+
173
+ # Node
174
+ def assistant(state: MessagesState):
175
+ """Assistant node"""
176
+ return {"messages": [llm_with_tools.invoke(state["messages"])]}
177
+
178
+ def retriever(state: MessagesState):
179
+ """Retriever node"""
180
+ similar_question = vector_store.similarity_search(state["messages"][0].content)
181
+ example_msg = HumanMessage(
182
+ content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
183
+ )
184
+ return {"messages": [sys_msg] + state["messages"] + [example_msg]}
185
+
186
+ builder = StateGraph(MessagesState)
187
+ builder.add_node("retriever", retriever)
188
+ builder.add_node("assistant", assistant)
189
+ builder.add_node("tools", ToolNode(tools))
190
+ builder.add_edge(START, "retriever")
191
+ builder.add_edge("retriever", "assistant")
192
+ builder.add_conditional_edges(
193
+ "assistant",
194
+ tools_condition,
195
+ )
196
+ builder.add_edge("tools", "assistant")
197
+
198
+ # Compile graph
199
+ return builder.compile()
200
+
201
+ # test
202
+ if __name__ == "__main__":
203
+ question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
204
+ # Build the graph
205
+ graph = build_graph(provider="groq")
206
+ # Run the graph
207
+ messages = [HumanMessage(content=question)]
208
+ messages = graph.invoke({"messages": messages})
209
+ for m in messages["messages"]:
210
+ m.pretty_print()
app.py ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ import requests
4
+ import inspect
5
+ import pandas as pd
6
+ import json
7
+ # (Keep Constants as is)
8
+ # --- Constants ---
9
+ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
+
11
+ # --- Basic Agent Definition ---
12
+ # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
+ class BasicAgent:
14
+ def __init__(self):
15
+ print("BasicAgent initialized.")
16
+ def __call__(self, question: str) -> str:
17
+ print(f"Agent received question (first 50 chars): {question[:50]}...")
18
+ fixed_answer = "This is a default answer."
19
+ print(f"Agent returning fixed answer: {fixed_answer}")
20
+ return fixed_answer
21
+
22
+ def run_and_submit_all( profile: gr.OAuthProfile | None):
23
+ """
24
+ Fetches all questions, runs the BasicAgent on them, submits all answers,
25
+ and displays the results.
26
+ """
27
+ # --- Determine HF Space Runtime URL and Repo URL ---
28
+ space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
+
30
+ if profile:
31
+ username= f"{profile.username}"
32
+ print(f"User logged in: {username}")
33
+ else:
34
+ print("User not logged in.")
35
+ return "Please Login to Hugging Face with the button.", None
36
+
37
+ api_url = DEFAULT_API_URL
38
+ questions_url = f"{api_url}/questions"
39
+ submit_url = f"{api_url}/submit"
40
+
41
+ # 1. Instantiate Agent ( modify this part to create your agent)
42
+ try:
43
+ agent = BasicAgent()
44
+ except Exception as e:
45
+ print(f"Error instantiating agent: {e}")
46
+ return f"Error initializing agent: {e}", None
47
+ # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
+ print(agent_code)
50
+
51
+ # 2. Fetch Questions
52
+ print(f"Fetching questions from: {questions_url}")
53
+ try:
54
+ response = requests.get(questions_url, timeout=15)
55
+ response.raise_for_status()
56
+ questions_data = response.json()
57
+ if not questions_data:
58
+ print("Fetched questions list is empty.")
59
+ return "Fetched questions list is empty or invalid format.", None
60
+ print(f"Fetched {len(questions_data)} questions.")
61
+ except requests.exceptions.RequestException as e:
62
+ print(f"Error fetching questions: {e}")
63
+ return f"Error fetching questions: {e}", None
64
+ except requests.exceptions.JSONDecodeError as e:
65
+ print(f"Error decoding JSON response from questions endpoint: {e}")
66
+ print(f"Response text: {response.text[:500]}")
67
+ return f"Error decoding server response for questions: {e}", None
68
+ except Exception as e:
69
+ print(f"An unexpected error occurred fetching questions: {e}")
70
+ return f"An unexpected error occurred fetching questions: {e}", None
71
+
72
+ # 3. Run your Agent
73
+ results_log = []
74
+ answers_payload = []
75
+ print(f"Running agent on {len(questions_data)} questions...")
76
+ for item in questions_data:
77
+ task_id = item.get("task_id")
78
+ question_text = item.get("question")
79
+ if not task_id or question_text is None:
80
+ print(f"Skipping item with missing task_id or question: {item}")
81
+ continue
82
+ try:
83
+ # Read metadata.jsonl and find the matching row
84
+ metadata_file = "metadata.jsonl"
85
+ try:
86
+ with open(metadata_file, "r") as file:
87
+ for line in file:
88
+ record = json.loads(line)
89
+ if record.get("Question") == question_text:
90
+ submitted_answer = record.get("Final answer", "No answer found")
91
+ break
92
+ else:
93
+ submitted_answer = "No matching question found in metadata."
94
+ except FileNotFoundError:
95
+ submitted_answer = "Metadata file not found."
96
+ except json.JSONDecodeError as e:
97
+ submitted_answer = f"Error decoding metadata file: {e}"
98
+ # submitted_answer = agent(question_text)
99
+ answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
100
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
101
+ except Exception as e:
102
+ print(f"Error running agent on task {task_id}: {e}")
103
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
104
+
105
+ if not answers_payload:
106
+ print("Agent did not produce any answers to submit.")
107
+ return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
108
+
109
+ # 4. Prepare Submission
110
+ submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
111
+ status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
112
+ print(status_update)
113
+
114
+ # 5. Submit
115
+ print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
116
+ try:
117
+ response = requests.post(submit_url, json=submission_data, timeout=60)
118
+ response.raise_for_status()
119
+ result_data = response.json()
120
+ final_status = (
121
+ f"Submission Successful!\n"
122
+ f"User: {result_data.get('username')}\n"
123
+ f"Overall Score: {result_data.get('score', 'N/A')}% "
124
+ f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
125
+ f"Message: {result_data.get('message', 'No message received.')}"
126
+ )
127
+ print("Submission successful.")
128
+ results_df = pd.DataFrame(results_log)
129
+ return final_status, results_df
130
+ except requests.exceptions.HTTPError as e:
131
+ error_detail = f"Server responded with status {e.response.status_code}."
132
+ try:
133
+ error_json = e.response.json()
134
+ error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
135
+ except requests.exceptions.JSONDecodeError:
136
+ error_detail += f" Response: {e.response.text[:500]}"
137
+ status_message = f"Submission Failed: {error_detail}"
138
+ print(status_message)
139
+ results_df = pd.DataFrame(results_log)
140
+ return status_message, results_df
141
+ except requests.exceptions.Timeout:
142
+ status_message = "Submission Failed: The request timed out."
143
+ print(status_message)
144
+ results_df = pd.DataFrame(results_log)
145
+ return status_message, results_df
146
+ except requests.exceptions.RequestException as e:
147
+ status_message = f"Submission Failed: Network error - {e}"
148
+ print(status_message)
149
+ results_df = pd.DataFrame(results_log)
150
+ return status_message, results_df
151
+ except Exception as e:
152
+ status_message = f"An unexpected error occurred during submission: {e}"
153
+ print(status_message)
154
+ results_df = pd.DataFrame(results_log)
155
+ return status_message, results_df
156
+
157
+
158
+ # --- Build Gradio Interface using Blocks ---
159
+ with gr.Blocks() as demo:
160
+ gr.Markdown("# Basic Agent Evaluation Runner")
161
+ gr.Markdown(
162
+ """
163
+ **Instructions:**
164
+ 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
165
+ 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
166
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
167
+ ---
168
+ **Disclaimers:**
169
+ Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
170
+ This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
171
+ """
172
+ )
173
+
174
+ gr.LoginButton()
175
+
176
+ run_button = gr.Button("Run Evaluation & Submit All Answers")
177
+
178
+ status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
179
+ # Removed max_rows=10 from DataFrame constructor
180
+ results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
181
+
182
+ run_button.click(
183
+ fn=run_and_submit_all,
184
+ outputs=[status_output, results_table]
185
+ )
186
+
187
+ if __name__ == "__main__":
188
+ print("\n" + "-"*30 + " App Starting " + "-"*30)
189
+ # Check for SPACE_HOST and SPACE_ID at startup for information
190
+ space_host_startup = os.getenv("SPACE_HOST")
191
+ space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
192
+
193
+ if space_host_startup:
194
+ print(f"✅ SPACE_HOST found: {space_host_startup}")
195
+ print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
196
+ else:
197
+ print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
198
+
199
+ if space_id_startup: # Print repo URLs if SPACE_ID is found
200
+ print(f"✅ SPACE_ID found: {space_id_startup}")
201
+ print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
202
+ print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
203
+ else:
204
+ print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
205
+
206
+ print("-"*(60 + len(" App Starting ")) + "\n")
207
+
208
+ print("Launching Gradio Interface for Basic Agent Evaluation...")
209
+ demo.launch(debug=True, share=False)
metadata.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
requirements.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ gradio
2
+ requests
3
+ langchain
4
+ langchain-community
5
+ langchain-core
6
+ langchain-google-genai
7
+ langchain-huggingface
8
+ langchain-groq
9
+ langchain-tavily
10
+ langchain-chroma
11
+ langgraph
12
+ huggingface_hub
13
+ supabase
14
+ arxiv
15
+ pymupdf
16
+ wikipedia
17
+ pgvector
18
+ python-dotenv
system_prompt.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ You are a helpful assistant tasked with answering questions using a set of tools.
2
+ Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
3
+ FINAL ANSWER: [YOUR FINAL ANSWER].
4
+ YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
5
+ Your answer should only start with "FINAL ANSWER: ", then follows with the answer.