import gradio as gr import torch from PIL import ImageDraw, Image, ImageFont import numpy as np import requests from io import BytesIO import matplotlib.pyplot as plt import torch from transformers import SamModel, SamProcessor import os # Define variables path = os.getcwd() font_path = r'{}/arial.ttf'.format(path) print(font_path) # Load the pre-trained model - FastSAM # fastsam_model = FastSAM('./FastSAM-s.pt') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = SamModel.from_pretrained("facebook/sam-vit-huge").to(device) processor = SamProcessor.from_pretrained("facebook/sam-vit-huge") # Points global_points = [] global_point_label = [] previous_box_points = 0 # Description title = "
🍔 Segment food with clicks 🍜
" instruction = """ # Instruction This segmentation tool is built with HuggingFace SAM model. To use to label true mask, please follow the following steps \n 🔥 Step 1: Copy segmentation candidate image link and paste in 'Enter Image URL' and click 'Upload Image' \n 🔥 Step 2: Add positive (Add mask), negative (Remove Area), and bounding box for the food \n 🔥 Step 3: Click on 'Segment with prompts' to segment Image and see if there's a correct segmentation on the 3 options \n 🔥 Step 4: If not, you can repeat the process of adding prompt and segment until a correct one is generated. Prompt history will be retained unless reloading the image \n 🔥 Step 5: Download the satisfied segmentaion image through the icon on top right corner of the image, please name it with 'correct_seg_xxx' where xxx is the photo ID """ css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }" def read_image(url): response = requests.get(url) img = Image.open(BytesIO(response.content)) global global_points global global_point_label global draw global_points = [] global_point_label = [] return img # def show_mask(mask, ax, random_color=False): # if random_color: # color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) # else: # color = np.array([30/255, 144/255, 255/255, 0.6]) # h, w = mask.shape[-2:] # mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) # ax.imshow(mask_image) # def show_points(coords, labels, ax, marker_size=375): # pos_points = coords[labels==1] # neg_points = coords[labels==0] # ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) # ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) # def show_masks_and_points_on_image(raw_image, mask, input_points, input_labels, args): # masks = masks.squeeze() if len(masks.shape) == 4 else masks.unsqueeze(0) if len(masks.shape) == 2 else masks # scores = scores.squeeze() if (scores.shape[0] == 1) & (len(scores.shape) == 3) else scores # # # input_points = np.array(input_points) # labels = np.array(input_labels) # # # mask = mask.cpu().detach() # plt.imshow(np.array(raw_image)) # ax = plt.gca() # show_mask(mask, ax) # show_points(input_points, labels, ax, marker_size=375) # ax.axis("off") # save_path = args.output # if not os.path.exists(save_path): # os.makedirs(save_path) # plt.axis("off") # fig = plt.gcf() # plt.draw() # try: # buf = fig.canvas.tostring_rgb() # except AttributeError: # fig.canvas.draw() # buf = fig.canvas.tostring_rgb() # cols, rows = fig.canvas.get_width_height() # img_array = np.fromstring(buf, dtype=np.uint8).reshape(rows, cols, 3) # cv2.imwrite(os.path.join(save_path, result_name), cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)) def format_prompt_points(points, labels): prompt_points = [xy for xy, l in zip(points, labels) if l != 9] point_labels = [l for l in labels if l != 9] # prompt_boxes = None if len(point_labels) < len(labels): prompt_boxes = [[np.array([xy for xy, l in zip(points, labels) if l == 9]).reshape(-1, 4).tolist()]] return prompt_points, point_labels, prompt_boxes # def get_mask_image(raw_image, mask): # tmp_mask = np.array(mask) # tmp_img_arr = np.array(raw_image) # tmp_img_arr[tmp_mask == False] = [255,255,255] # return tmp_img_arr def get_mask_image(raw_image, mask): tmp_mask = np.array(mask * 1) tmp_mask[tmp_mask == 1] = 255 tmp_mask2 = np.expand_dims(tmp_mask, axis=2) # tmp_img_arr = np.array(raw_image) tmp_img_arr = np.concatenate((tmp_img_arr, tmp_mask2), axis = 2) return tmp_img_arr def segment_with_points( input, input_size=1024, iou_threshold=0.7, conf_threshold=0.25, better_quality=False, withContours=True, use_retina=True, mask_random_color=True, ): global global_points global global_point_label # read image raw_image = Image.open(requests.get(input, stream=True).raw).convert("RGB") # get prompts prompt_points, point_labels, prompt_boxes = format_prompt_points(global_points, global_point_label) print(prompt_points, point_labels, prompt_boxes) # segment inputs = processor(raw_image, input_boxes = prompt_boxes, input_points=[[prompt_points]], input_labels=[point_labels], return_tensors="pt").to(device) with torch.no_grad(): outputs = model(**inputs) # masks = processor.image_processor.post_process_masks( outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu()) scores = outputs.iou_scores # only show the first mask # fig = show_masks_and_points_on_image(raw_image, masks[0][0][0], [global_points], global_point_label) mask_images = [get_mask_image(raw_image, m) for m in masks[0][0]] mask_img1, mask_img2, mask_img3 = mask_images # return fig, None return mask_img1, mask_img2, mask_img3 def find_font_size(text, font_path, image, target_width_ratio): tested_font_size = 100 tested_font = ImageFont.truetype(font_path, tested_font_size) observed_width = get_text_size(text, image, tested_font) estimated_font_size = tested_font_size / (observed_width / image.width) * target_width_ratio return round(estimated_font_size) def get_text_size(text, image, font): im = Image.new('RGB', (image.width, image.height)) draw = ImageDraw.Draw(im) return draw.textlength(text, font) def get_points_with_draw(image, label, evt: gr.SelectData): global global_points global global_point_label global previous_box_points x, y = evt.index[0], evt.index[1] point_radius = 15 point_color = (255, 255, 0) if label == 'Add Mask' else (255, 0, 255) global_points.append([x, y]) global_point_label.append(1 if label == 'Add Mask' else 0 if label == 'Remove Area' else 9) draw = ImageDraw.Draw(image) print(x, y, label) print(previous_box_points) if label != 'Bounding Box': draw.ellipse([(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], fill=point_color) else: if (previous_box_points == 0) | (previous_box_points%2 == 0): target_width_ratio = 0.9 text = "Please Click Another Point For Bounding Box" font_size = find_font_size(text, font_path, image, target_width_ratio) font = ImageFont.truetype(font_path, font_size) draw.text((x, y), text, fill = (0,0,0), font = font) else: [previous_x, previous_y] = global_points[-2] print((previous_x, previous_y), (x, y)) draw.rectangle([(previous_x, previous_y), (x, y)], outline=(0, 0, 255), width=10) previous_box_points += 1 return image def clear(): global global_points global global_point_label global_points = [] global_point_label = [] previous_box_points = 0 return None, None, None, None # Configure layout cond_img_p = gr.Image(label="Input with points", type='pil') segm_img_p1 = gr.Image(label="Segmented Image Option 1", interactive=False, type='pil', format="png") segm_img_p2 = gr.Image(label="Segmented Image Option 2", interactive=False, type='pil', format="png") segm_img_p3 = gr.Image(label="Segmented Image Option 3", interactive=False, type='pil', format="png") with gr.Blocks(css=css, title='Segment Food with Prompts') as demo: with gr.Row(): with gr.Column(scale=1): gr.Markdown(title) gr.Markdown("") image_url = gr.Textbox(label="Enter Image URL", value = "https://img.cdn4dd.com/u/media/4da0fbcf-5e3d-45d4-8995-663fbcf3c3c8.jpg") run_with_url = gr.Button("Upload Image") with gr.Column(scale=1): gr.Markdown(instruction) # Images with gr.Row(variant="panel"): with gr.Column(scale=0): cond_img_p.render() segm_img_p2.render() with gr.Column(scale=0): segm_img_p1.render() segm_img_p3.render() # Submit & Clear with gr.Row(): with gr.Column(): add_or_remove = gr.Radio(["Add Mask", "Remove Area", "Bounding Box"], value="Add Mask", label="Point label") with gr.Column(): segment_btn_p = gr.Button("Segment with prompts", variant='primary') clear_btn_p = gr.Button("Clear points", variant='secondary') # Define interaction relationship run_with_url.click(read_image, inputs=[image_url], # outputs=[segm_img_p, cond_img_p]) outputs=[cond_img_p]) cond_img_p.select(get_points_with_draw, [cond_img_p, add_or_remove], cond_img_p) segment_btn_p.click(segment_with_points, inputs=[image_url], # outputs=[segm_img_p, cond_img_p]) outputs=[segm_img_p1, segm_img_p2, segm_img_p3]) clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p1, segm_img_p2, segm_img_p3]) demo.queue() demo.launch()