machine-learning-ui / views /dashboard.py
katanaml's picture
v1.0.0
e97acf0
raw
history blame
4.88 kB
import streamlit as st
import numpy as np
import pandas as pd
import os
import json
import altair as alt
from pathlib import Path
class Dashboard:
class Model:
pageTitle = "Dashboard"
documentsTitle = "Pages"
documentsCount = "10.5K"
documentsDelta = "125"
annotationsTitle = "Documents"
annotationsCount = "510"
annotationsDelta = "-2"
accuracyTitle = "Accuracy"
accuracyCount = "87.9%"
accuracyDelta = "0.1%"
trainingTitle = "Training Time"
trainingCount = "1.5 hrs"
trainingDelta = "10 mins"
processingTitle = "Processing Time"
processingCount = "3 secs"
processingDelta = "-0.1 secs"
titleDataExtraction = "## Data Extraction"
titleModelTraining = "## Model Training"
titleDataAnnotation = "## Data Annotation"
titleDocumentTypes = "## Document Types"
status_file = "docs/status.json"
annotation_files_dir = "docs/json"
def view(self, model):
# st.title(model.pageTitle)
with st.container():
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
st.metric(label=model.documentsTitle, value=model.documentsCount, delta=model.documentsDelta)
with col2:
st.metric(label=model.annotationsTitle, value=model.annotationsCount, delta=model.annotationsDelta)
with col3:
st.metric(label=model.accuracyTitle, value=model.accuracyCount, delta=model.accuracyDelta)
with col4:
st.metric(label=model.trainingTitle, value=model.trainingCount, delta=model.trainingDelta, delta_color="inverse")
with col5:
st.metric(label=model.processingTitle, value=model.processingCount, delta=model.processingDelta, delta_color="inverse")
st.markdown("---")
with st.container():
st.write(model.titleDataExtraction)
chart_data = pd.DataFrame(
np.random.randn(20, 3),
columns=['a', 'b', 'c'])
st.line_chart(chart_data)
st.markdown("---")
with st.container():
col1, col2, col3 = st.columns(3)
with col1:
with st.container():
st.write(model.titleDataAnnotation)
total, completed, in_progress = self.calculate_annotation_stats(model)
source = pd.DataFrame({"Status": ["Completed", "In Progress"], "value": [completed, in_progress]})
c = alt.Chart(source).mark_arc(innerRadius=50).encode(
theta=alt.Theta(field="value", type="quantitative"),
color=alt.Color(field="Status", type="nominal"),
)
st.altair_chart(c, use_container_width=True)
with col2:
with st.container():
st.write(model.titleModelTraining)
source = pd.DataFrame({"Status": ["Running", "Failed", "Successful"], "value": [2, 10, 14]})
c = alt.Chart(source).mark_arc(innerRadius=50).encode(
theta=alt.Theta(field="value", type="quantitative"),
color=alt.Color(field="Status", type="nominal"),
)
st.altair_chart(c, use_container_width=True)
with col3:
with st.container():
st.write(model.titleDocumentTypes)
source = pd.DataFrame({"Types": ["Receipt", "Invoice", "General Form", "Claim"], "value": [22, 130, 5, 44]})
c = alt.Chart(source).mark_arc(innerRadius=50).encode(
theta=alt.Theta(field="value", type="quantitative"),
color=alt.Color(field="Types", type="nominal"),
)
st.altair_chart(c, use_container_width=True)
def calculate_annotation_stats(self, model):
completed = 0
in_progress = 0
data_dir_path = Path(model.annotation_files_dir)
for file_name in data_dir_path.glob("*.json"):
with open(file_name, "r") as f:
data = json.load(f)
v = data['meta']['version']
if v == 'v0.1':
in_progress += 1
else:
completed += 1
total = completed + in_progress
status_json = {
"annotations": [
{
"completed": completed,
"in_progress": in_progress,
"total": total
}
]
}
with open(model.status_file, "w") as f:
json.dump(status_json, f, indent=2)
return total, completed, in_progress