File size: 1,647 Bytes
db71016
edbe728
 
 
db71016
edbe728
db71016
edbe728
 
 
 
 
 
 
 
 
 
 
 
 
db71016
 
 
 
 
 
 
 
edbe728
 
db71016
 
 
 
 
edbe728
db71016
edbe728
 
db71016
edbe728
 
 
 
 
db71016
edbe728
 
 
db71016
 
 
edbe728
db71016
 
 
 
 
 
 
 
 
 
 
 
edbe728
db71016
edbe728
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import gradio as gr
import spaces
import transformers
import torch

model_id = "joermd/speedy-llama2"

pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto",
)

terminators = [
    pipeline.tokenizer.eos_token_id,
    pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

@spaces.GPU
def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = []
    
    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    outputs = pipeline(
        messages,
        max_new_tokens=256,
        eos_token_id=terminators,
    )
    
    yield outputs[0]["generated_text"][-1]["content"]

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="Kamu adalah seorang asisten yang baik", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch()