File size: 10,989 Bytes
a3acd70 b43f4c5 a3acd70 b43f4c5 a3acd70 0799651 48814e4 b895560 b43f4c5 1148762 0799651 b43f4c5 1148762 a3acd70 48814e4 a3acd70 0799651 48814e4 a3acd70 48814e4 0799651 48814e4 0799651 a3acd70 0799651 a3acd70 0799651 48814e4 a3acd70 48814e4 0799651 48814e4 a3acd70 48814e4 a3acd70 0799651 48814e4 a3acd70 0799651 48814e4 0799651 48814e4 0799651 a3acd70 48814e4 a3acd70 b43f4c5 48814e4 a3acd70 0799651 a3acd70 48814e4 a54100a a997194 a3acd70 48814e4 0799651 48814e4 a3acd70 0799651 a3acd70 0799651 a54100a a3acd70 a54100a 48814e4 a54100a a3acd70 0a285a8 a54100a 0a285a8 1148762 0a285a8 48814e4 0a285a8 a3acd70 0a285a8 48814e4 0a285a8 48814e4 0a285a8 48814e4 0a285a8 a3acd70 0a285a8 1148762 0a285a8 1148762 0a285a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
import streamlit as st
from streamlit_option_menu import option_menu
import requests
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from datetime import datetime
import httpx
import asyncio
import aiohttp
from bs4 import BeautifulSoup
import whois
import ssl
import socket
import dns.resolver
from urllib.parse import urlparse
import json
import numpy as np
from PIL import Image
import io
import time
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import timedelta
import tldextract
from concurrent.futures import ThreadPoolExecutor
import re
from collections import Counter
from wordcloud import WordCloud
import advertools as adv
from collections import Counter
# Page configuration
st.set_page_config(
layout="wide",
page_title="محلل المواقع المتقدم | Website Analyzer Pro",
page_icon="🔍",
initial_sidebar_state="expanded"
)
# Custom CSS
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Tajawal:wght@400;500;700&display=swap');
* {
font-family: 'Tajawal', sans-serif;
}
.main {
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
padding: 20px;
}
.metric-card {
background: white;
border-radius: 15px;
padding: 20px;
box-shadow: 0 4px 15px rgba(0,0,0,0.1);
transition: all 0.3s ease;
margin-bottom: 20px;
}
.metric-card:hover {
transform: translateY(-5px);
box-shadow: 0 8px 25px rgba(0,0,0,0.15);
}
.metric-value {
font-size: 2em;
font-weight: bold;
color: #2196F3;
}
.metric-label {
color: #666;
font-size: 1.1em;
}
.stButton>button {
background: linear-gradient(45deg, #2196F3, #21CBF3);
color: white;
border-radius: 25px;
padding: 15px 30px;
border: none;
box-shadow: 0 4px 15px rgba(33,150,243,0.3);
transition: all 0.3s ease;
font-size: 1.1em;
font-weight: 500;
width: 100%;
}
.stButton>button:hover {
transform: translateY(-2px);
box-shadow: 0 6px 20px rgba(33,150,243,0.4);
}
h1, h2, h3 {
color: #1E3D59;
font-weight: 700;
}
.stTextInput>div>div>input {
border-radius: 10px;
border: 2px solid #E0E0E0;
padding: 12px;
font-size: 1.1em;
transition: all 0.3s ease;
}
.stTextInput>div>div>input:focus {
border-color: #2196F3;
box-shadow: 0 0 0 2px rgba(33,150,243,0.2);
}
.streamlit-expanderHeader {
background-color: white;
border-radius: 10px;
padding: 10px;
box-shadow: 0 2px 8px rgba(0,0,0,0.1);
}
.stProgress > div > div > div {
background-color: #2196F3;
}
.tab-content {
padding: 20px;
background: white;
border-radius: 15px;
box-shadow: 0 4px 15px rgba(0,0,0,0.1);
}
.insight-card {
background: #f8f9fa;
border-right: 4px solid #2196F3;
padding: 15px;
margin: 10px 0;
border-radius: 8px;
}
.chart-container {
background: white;
padding: 20px;
border-radius: 15px;
box-shadow: 0 4px 15px rgba(0,0,0,0.1);
margin: 20px 0;
}
</style>
""", unsafe_allow_html=True)
class AdvancedWebsiteAnalyzer:
def __init__(self):
self.headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
}
self.history = self.load_history()
# [Previous methods remain the same until analyze_seo]
async def analyze_seo(self, url):
try:
async with httpx.AsyncClient() as client:
response = await client.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
content_analysis = self._analyze_content(soup)
links_analysis = self._analyze_links(soup)
keywords_analysis = self._extract_keywords(soup)
seo_analysis = {
"تحليل العنوان": self._analyze_title(soup),
"تحليل الوصف": self._analyze_description(soup),
"تحليل الكلمات المفتاحية": keywords_analysis,
"تحليل العناوين": self._analyze_headings(soup),
"تحليل الروابط": links_analysis,
"تحليل المحتوى": content_analysis,
"تقييم SEO": self._calculate_seo_score(soup),
"توصيات تحسين SEO": self._get_seo_recommendations(soup)
}
return seo_analysis
except Exception as e:
return {"error": f"خطأ في تحليل SEO: {str(e)}"}
def _extract_keywords(self, soup):
# Add implementation for keyword extraction
pass
def _calculate_seo_score(self, soup):
# Add implementation for SEO scoring
pass
def _get_seo_recommendations(self, soup):
# Add implementation for SEO recommendations
pass
def _analyze_content(self, soup):
"""
Analyzes webpage content for SEO factors
"""
try:
text_content = ' '.join([p.text.strip() for p in soup.find_all(['p', 'div', 'article', 'section'])])
headings = {f'h{i}': len(soup.find_all(f'h{i}')) for i in range(1, 7)}
words = text_content.split()
word_count = len(words)
readability_score = self._calculate_readability(text_content)
keyword_density = self._calculate_keyword_density(text_content)
images = soup.find_all('img')
images_with_alt = len([img for img in images if img.get('alt')])
quality_score = self._calculate_content_quality_score(
word_count,
readability_score,
images_with_alt,
len(images),
headings
)
return {
"إحصائيات المحتوى": {
"عدد الكلمات": word_count,
"مستوى القراءة": readability_score,
"نسبة الصور مع نص بديل": f"{(images_with_alt/len(images)*100 if images else 0):.1f}%",
"توزيع العناوين": headings,
},
"تحليل الكلمات المفتاحية": {
"كثافة الكلمات الرئيسية": keyword_density,
"الكلمات الأكثر تكراراً": self._get_top_words(text_content, 5)
},
"تقييم جودة المحتوى": {
"الدرجة": quality_score,
"التقييم": self._get_content_rating(quality_score),
"التوصيات": self._get_content_recommendations(
word_count,
readability_score,
images_with_alt,
len(images),
headings
)
}
}
except Exception as e:
return {"error": f"خطأ في تحليل المحتوى: {str(e)}"}
def _calculate_readability(self, text):
# Add implementation for readability calculation
pass
def _calculate_keyword_density(self, text):
# Add implementation for keyword density calculation
pass
def _calculate_content_quality_score(self, word_count, readability, alt_images, total_images, headings):
score = 100
if word_count < 300:
score -= 20
elif word_count < 600:
score -= 10
if readability < 40:
score -= 15
elif readability < 60:
score -= 10
if total_images > 0:
alt_ratio = alt_images / total_images
if alt_ratio < 0.5:
score -= 15
elif alt_ratio < 0.8:
score -= 10
if headings.get('h1', 0) == 0:
score -= 10
if headings.get('h1', 0) > 1:
score -= 5
if headings.get('h2', 0) == 0:
score -= 5
return max(0, score)
def _get_content_rating(self, score):
if score >= 90:
return "ممتاز"
elif score >= 80:
return "جيد جداً"
elif score >= 70:
return "جيد"
elif score >= 60:
return "مقبول"
else:
return "يحتاج تحسين"
def _get_content_recommendations(self, word_count, readability, alt_images, total_images, headings):
recommendations = []
if word_count < 300:
recommendations.append({
"المشكلة": "محتوى قصير جداً",
"الحل": "زيادة المحتوى إلى 300 كلمة على الأقل",
"الأولوية": "عالية"
})
if readability < 60:
recommendations.append({
"المشكلة": "صعوبة قراءة المحتوى",
"الحل": "تبسيط الجمل واستخدام لغة أسهل",
"الأولوية": "متوسطة"
})
if total_images > 0 and (alt_images / total_images) < 0.8:
recommendations.append({
"المشكلة": "نقص في النصوص البديلة للصور",
"الحل": "إضافة نص بديل وصفي لجميع الصور",
"الأولوية": "عالية"
})
if headings.get('h1', 0) != 1:
recommendations.append({
"المشكلة": "عدد غير مناسب من عناوين H1",
"الحل": "استخدام عنوان H1 واحد فقط للصفحة",
"الأولوية": "عالية"
})
return recommendations if recommendations else [{
"المشكلة": "لا توجد مشاكل واضحة",
"الحل": "الاستمرار في تحديث المحتوى بشكل دوري",
"الأولوية": "منخفضة"
}]
def _get_top_words(self, text, count=5):
stop_words = set(['و', 'في', 'من', 'على', 'the', 'and', 'in', 'of', 'to'])
words = text.lower().split()
word_freq = Counter(word for word in words if word not in stop_words and len(word) > 2)
return {word: count for word, count in word_freq.most_common(count)} |