File size: 6,805 Bytes
b43f4c5 da60d2c b43f4c5 da60d2c b43f4c5 da60d2c b43f4c5 da60d2c b43f4c5 da60d2c b43f4c5 da60d2c b43f4c5 da60d2c b43f4c5 da60d2c b43f4c5 da60d2c b43f4c5 da60d2c b43f4c5 da60d2c b43f4c5 da60d2c b43f4c5 da60d2c b43f4c5 da60d2c b43f4c5 da60d2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import socket
import requests
from urllib.parse import urlparse
from bs4 import BeautifulSoup
import streamlit as st
import matplotlib.pyplot as plt
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
import geoip2.database
def analyze_ip_free(url):
"""
Analyze IP address and geolocation of a given URL
Uses GeoLite2 database to retrieve location information
Args:
url (str): Website URL to analyze
Returns:
dict: IP and location details or error information
"""
try:
domain = urlparse(url).netloc
ip = socket.gethostbyname(domain)
with geoip2.database.Reader('GeoLite2-City.mmdb') as reader:
response = reader.city(ip)
return {
"ip": ip,
"city": response.city.name or "Unknown",
"region": response.subdivisions.most_specific.name or "Unknown",
"country": response.country.name or "Unknown",
"latitude": response.location.latitude or "Unknown",
"longitude": response.location.longitude or "Unknown",
}
except Exception as e:
return {"error": str(e)}
def analyze_uptime_free(url):
"""
Check website availability and response status
Args:
url (str): Website URL to check
Returns:
dict: Uptime status and status code
"""
try:
response = requests.get(url, timeout=5)
return {
"status": "Up" if response.status_code == 200 else "Down",
"status_code": response.status_code,
}
except requests.exceptions.RequestException as e:
return {"status": "Down", "error": str(e)}
def analyze_seo_free(url):
"""
Extract basic SEO information from the website
Args:
url (str): Website URL to analyze
Returns:
dict: SEO-related metadata
"""
try:
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
title = soup.title.string if soup.title else "No Title"
meta_description = soup.find("meta", attrs={"name": "description"})
keywords = soup.find("meta", attrs={"name": "keywords"})
return {
"title": title,
"meta_description": meta_description["content"] if meta_description else "No Description",
"keywords": keywords["content"] if keywords else "No Keywords",
}
except Exception as e:
return {"error": str(e)}
def analyze_carbon_free(url):
"""
Estimate website's carbon footprint based on page size
Args:
url (str): Website URL to analyze
Returns:
dict: Page size and estimated CO2 emissions
"""
try:
response = requests.get(url)
page_size = len(response.content) / 1024 # in kilobytes
co2_estimation = page_size * 0.02 # rough CO2 emission estimate
return {
"page_size_kb": round(page_size, 2),
"estimated_co2_g": round(co2_estimation, 2),
}
except Exception as e:
return {"error": str(e)}
def draw_bar_chart(data, title, xlabel, ylabel):
"""
Create a bar chart visualization
Args:
data (dict): Data to visualize
title (str): Chart title
xlabel (str): X-axis label
ylabel (str): Y-axis label
"""
keys, values = list(data.keys()), list(data.values())
plt.figure(figsize=(8, 5))
plt.bar(keys, values, color='skyblue')
plt.title(title)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.tight_layout()
plt.savefig('chart.png')
plt.show()
def export_to_pdf_free(results, file_path):
"""
Export analysis results to a PDF report
Args:
results (dict): Analysis results
file_path (str): Path to save PDF
"""
c = canvas.Canvas(file_path, pagesize=letter)
c.drawString(30, 750, "Website Analysis Report")
c.drawString(30, 730, "=" * 50)
y = 700
for section, content in results.items():
c.drawString(30, y, f"{section}:")
y -= 20
for key, value in content.items():
c.drawString(50, y, f"- {key}: {value}")
y -= 20
y -= 20
c.save()
def main():
"""
Main Streamlit application for website analysis
"""
st.title("أداة تحليل المواقع")
st.write("تحليل شامل للمواقع باستخدام أدوات مجانية")
# URL input
url = st.text_input("أدخل رابط الموقع:", "https://example.com")
if url:
# IP Analysis
st.subheader("1. تحليل عنوان IP والموقع الجغرافي")
ip_data = analyze_ip_free(url)
if "error" in ip_data:
st.error(ip_data["error"])
else:
st.json(ip_data)
# Uptime Analysis
st.subheader("2. تحليل توافر الموقع")
uptime_data = analyze_uptime_free(url)
if "error" in uptime_data:
st.error(uptime_data["error"])
else:
st.json(uptime_data)
# SEO Analysis
st.subheader("3. تحليل تحسين محركات البحث (SEO)")
seo_data = analyze_seo_free(url)
if "error" in seo_data:
st.error(seo_data["error"])
else:
st.json(seo_data)
# Carbon Analysis
st.subheader("4. تحليل الأثر البيئي")
carbon_data = analyze_carbon_free(url)
if "error" in carbon_data:
st.error(carbon_data["error"])
else:
st.json(carbon_data)
# Carbon Analysis Chart
st.subheader("رسم بياني لتحليل الأثر البيئي")
co2_data = {
"Page Size (KB)": carbon_data["page_size_kb"],
"CO2 Emission (g)": carbon_data["estimated_co2_g"]
}
draw_bar_chart(co2_data, "Carbon Analysis", "Category", "Value")
st.image("chart.png")
# PDF Export
st.subheader("5. تصدير التقرير إلى PDF")
if st.button("تصدير التقرير"):
results = {
"IP Analysis": ip_data,
"Uptime Analysis": uptime_data,
"SEO Analysis": seo_data,
"Carbon Analysis": carbon_data,
}
file_path = "website_analysis_report.pdf"
export_to_pdf_free(results, file_path)
st.success(f"تم تصدير التقرير إلى {file_path}")
with open(file_path, "rb") as pdf_file:
st.download_button("تحميل التقرير", data=pdf_file, file_name="website_analysis_report.pdf")
if __name__ == "__main__":
main() |