import streamlit as st from streamlit_option_menu import option_menu import requests import pandas as pd import plotly.express as px import plotly.graph_objects as go from datetime import datetime import httpx import asyncio import aiohttp from bs4 import BeautifulSoup import whois import ssl import socket import dns.resolver from urllib.parse import urlparse import json import numpy as np from PIL import Image import io import time import matplotlib.pyplot as plt import seaborn as sns from datetime import timedelta import tldextract from concurrent.futures import ThreadPoolExecutor import re from collections import Counter from wordcloud import WordCloud import advertools as adv # Page configuration st.set_page_config( layout="wide", page_title="محلل المواقع المتقدم | Website Analyzer Pro", page_icon="🔍", initial_sidebar_state="expanded" ) # Custom CSS st.markdown(""" """, unsafe_allow_html=True) class AdvancedWebsiteAnalyzer: def __init__(self): self.headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' } self.history = self.load_history() def load_history(self): try: return pd.read_csv('analysis_history.csv') except: return pd.DataFrame(columns=['url', 'timestamp', 'performance_score', 'seo_score', 'security_score']) def save_history(self, data): self.history = pd.concat([self.history, pd.DataFrame([data])], ignore_index=True) self.history.to_csv('analysis_history.csv', index=False) async def analyze_performance(self, url): try: start_time = time.time() async with httpx.AsyncClient() as client: response = await client.get(url) load_time = time.time() - start_time page_size = len(response.content) / 1024 soup = BeautifulSoup(response.text, 'html.parser') images = soup.find_all('img') scripts = soup.find_all('script') css_files = soup.find_all('link', {'rel': 'stylesheet'}) performance_metrics = { "زمن التحميل": round(load_time, 2), "حجم الصفحة": round(page_size, 2), "حالة الاستجابة": response.status_code, "عدد الصور": len(images), "عدد ملفات JavaScript": len(scripts), "عدد ملفات CSS": len(css_files), "تقييم الأداء": self._calculate_performance_score(load_time, page_size, len(images), len(scripts)), "توصيات التحسين": self._get_performance_recommendations(load_time, page_size, len(images), len(scripts)) } resources_analysis = await self._analyze_resources(url) performance_metrics.update(resources_analysis) return performance_metrics except Exception as e: return {"error": f"خطأ في تحليل الأداء: {str(e)}"} async def _analyze_resources(self, url): try: async with httpx.AsyncClient() as client: response = await client.get(url) soup = BeautifulSoup(response.text, 'html.parser') images = soup.find_all('img') image_sizes = [] for img in images[:5]: if img.get('src'): try: img_response = await client.get(img['src']) image_sizes.append(len(img_response.content) / 1024) except: continue return { "تحليل الموارد": { "متوسط حجم الصور": round(np.mean(image_sizes), 2) if image_sizes else 0, "عدد الموارد الخارجية": len(soup.find_all(['script', 'link', 'img'])), "توصيات تحسين الموارد": self._get_resource_recommendations(image_sizes) } } except Exception as e: return {"error": f"خطأ في تحليل الموارد: {str(e)}"} def _get_resource_recommendations(self, image_sizes): recommendations = [] if image_sizes: avg_size = np.mean(image_sizes) if avg_size > 100: recommendations.append({ "المشكلة": "حجم الصور كبير", "الحل": "ضغط الصور وتحسين جودتها", "الأولوية": "عالية" }) return recommendations if recommendations else [ { "المشكلة": "لا توجد مشاكل", "الحل": "الموارد محسنة بشكل جيد", "الأولوية": "منخفضة" } ] def _calculate_performance_score(self, load_time, page_size, image_count, script_count): score = 100 if load_time > 2: score -= min(30, (load_time - 2) * 10) if page_size > 1000: score -= min(20, (page_size - 1000) / 100) if image_count > 10: score -= min(15, (image_count - 10) * 1.5) if script_count > 5: score -= min(15, (script_count - 5) * 2) return max(0, round(score)) def _get_performance_recommendations(self, load_time, page_size, image_count, script_count): recommendations = [] if load_time > 2: recommendations.append({ "المشكلة": "بطء زمن التحميل", "الحل": "تحسين سرعة الخادم وتفعيل التخزين المؤقت", "الأولوية": "عالية" }) if page_size > 1000: recommendations.append({ "المشكلة": "حجم الصفحة كبير", "الحل": "ضغط الملفات وتحسين الكود", "الأولوية": "متوسطة" }) if image_count > 10: recommendations.append({ "المشكلة": "عدد كبير من الصور", "الحل": "تحسين حجم الصور واستخدام التحميل الكسول", "الأولوية": "متوسطة" }) if script_count > 5: recommendations.append({ "المشكلة": "عدد كبير من ملفات JavaScript", "الحل": "دمج وضغط ملفات JavaScript", "الأولوية": "عالية" }) return recommendations if recommendations else [{"المشكلة": "لا توجد مشاكل", "الحل": "الأداء جيد!", "الأولوية": "منخفضة"}] async def analyze_seo(self, url): try: async with httpx.AsyncClient() as client: response = await client.get(url) soup = BeautifulSoup(response.text, 'html.parser') content_analysis = self._analyze_content(soup) links_analysis = self._analyze_links(soup) keywords_analysis = self._extract_keywords(soup) seo_analysis = { "تحليل العنوان": self._analyze_title(soup), "تحليل الوصف": self._analyze_description(soup), "تحليل الكلمات المفتاحية": keywords_analysis, "تحليل العناوين": self._analyze_headings(soup), "تحليل الروابط": links_analysis, "تحليل المحتوى": content_analysis, "تقييم SEO": self._calculate_seo_score(soup), "توصيات تحسين SEO": self._get_seo_recommendations(soup) } return seo_analysis except Exception as e: return {"error": f"خطأ في تحليل SEO: {str(e)}"} def _analyze_title(self, soup): title = soup.find('title') title_text = title.text if title else "" return { "العنوان": title_text, "الطول": len(title_text), "التقييم": "جيد" if 30 <= len(title_text) <= 60 else "يحتاج تحسين" } def _analyze_description(self, soup): meta_desc = soup.find('meta', {'name': 'description'}) desc_text = meta_desc.get('content', '') if meta_desc else "" return { "الوصف": desc_text, "الطول": len(desc_text), "التقييم": "جيد" if 120 <= len(desc_text) <= 160 else "يحتاج تحسين" } def _analyze_headings(self, soup): headings = {} for i in range(1, 7): h_tags = soup.find_all(f'h{i}') headings[f'h{i}'] = { "العدد": len(h_tags), "النصوص": [h.text.strip() for h in h_tags] } return headings def _analyze_links(self, soup): links = soup.find_all('a') internal_links = [] external_links = [] broken_links = [] for link in links: href = link.get('href', '') if href.startswith('#') or not href: continue elif href.startswith('/') or urlparse(href).netloc == urlparse(href).netloc: internal_links.append(href) else: external_links.append(href) try: response = requests.head(href) if response.status_code >= 400: broken_links.append(href) except: broken_links.append(href) return { "عدد الروابط الداخلية": len(internal_links), "عدد الروابط الخارجية": len(external_links), "عدد الروابط المكسورة": len(broken_links), "الروابط المكسورة": broken_links } def _analyze_content(self, soup): """ Analyzes webpage content for SEO factors """ try: # Extract all text content text_content = ' '.join([p.text.strip() for p in soup.find_all(['p', 'div', 'article', 'section'])]) # Analyze headings hierarchy headings = {f'h{i}': len(soup.find_all(f'h{i}')) for i in range(1, 7)} # Calculate word count words = text_content.split() word_count = len(words) # Calculate readability score readability_score = self._calculate_readability(text_content) # Analyze keyword density keyword_density = self._calculate_keyword_density(text_content) # Check for images with alt text images = soup.find_all('img') images_with_alt = len([img for img in images if img.get('alt')]) # Calculate content quality score quality_score = self._calculate_content_quality_score( word_count, readability_score, images_with_alt, len(images), headings ) return { "إحصائيات المحتوى": { "عدد الكلمات": word_count, "مستوى القراءة": readability_score, "نسبة الصور مع نص بديل": f"{(images_with_alt/len(images)*100 if images else 0):.1f}%", "توزيع العناوين": headings, }, "تحليل الكلمات المفتاحية": { "كثافة الكلمات الرئيسية": keyword_density, "الكلمات الأكثر تكراراً": self._get_top_words(text_content, 5) }, "تقييم جودة المحتوى": { "الدرجة": quality_score, "التقييم": self._get_content_rating(quality_score), "التوصيات": self._get_content_recommendations( word_count, readability_score, images_with_alt, len(images), headings ) } } except Exception as e: return {"error": f"خطأ في تحليل المحتوى: {str(e)}"} def _calculate_content_quality_score(self, word_count, readability, alt_images, total_images, headings): """ Calculates a content quality score based on various factors """ score = 100 # Word count scoring if word_count < 300: score -= 20 elif word_count < 600: score -= 10 # Readability scoring if readability < 40: score -= 15 elif readability < 60: score -= 10 # Image alt text scoring if total_images > 0: alt_ratio = alt_images / total_images if alt_ratio < 0.5: score -= 15 elif alt_ratio < 0.8: score -= 10 # Heading hierarchy scoring if headings.get('h1', 0) == 0: score -= 10 if headings.get('h1', 0) > 1: score -= 5 if headings.get('h2', 0) == 0: score -= 5 return max(0, score) def _get_content_rating(self, score): """ Converts numerical score to qualitative rating """ if score >= 90: return "ممتاز" elif score >= 80: return "جيد جداً" elif score >= 70: return "جيد" elif score >= 60: return "مقبول" else: return "يحتاج تحسين" def _get_content_recommendations(self, word_count, readability, alt_images, total_images, headings): """ Generates content improvement recommendations """ recommendations = [] if word_count < 300: recommendations.append({ "المشكلة": "محتوى قصير جداً", "الحل": "زيادة المحتوى إلى 300 كلمة على الأقل", "الأولوية": "عالية" }) if readability < 60: recommendations.append({ "المشكلة": "صعوبة قراءة المحتوى", "الحل": "تبسيط الجمل واستخدام لغة أسهل", "الأولوية": "متوسطة" }) if total_images > 0 and (alt_images / total_images) < 0.8: recommendations.append({ "المشكلة": "نقص في النصوص البديلة للصور", "الحل": "إضافة نص بديل وصفي لجميع الصور", "الأولوية": "عالية" }) if headings.get('h1', 0) != 1: recommendations.append({ "المشكلة": "عدد غير مناسب من عناوين H1", "الحل": "استخدام عنوان H1 واحد فقط للصفحة", "الأولوية": "عالية" }) return recommendations if recommendations else [{ "المشكلة": "لا توجد مشاكل واضحة", "الحل": "الاستمرار في تحديث المحتوى بشكل دوري", "الأولوية": "منخفضة" }] def _get_top_words(self, text, count=5): """ Gets the most frequent meaningful words in the content """ # Remove common Arabic and English stop words stop_words = set(['و', 'في', 'من', 'على', 'the', 'and', 'in', 'of', 'to']) words = text.lower().split() word_freq = Counter(word for word in words if word not in stop_words and len(word) > 2) return {word: count for word, count in word_freq.most_common(count)}