import streamlit as st from streamlit_option_menu import option_menu import requests import pandas as pd import plotly.express as px import plotly.graph_objects as go from datetime import datetime import httpx import asyncio import aiohttp from bs4 import BeautifulSoup import whois import ssl import socket import dns.resolver from urllib.parse import urlparse import json import numpy as np from PIL import Image import io import time import matplotlib.pyplot as plt import seaborn as sns from datetime import timedelta import tldextract from concurrent.futures import ThreadPoolExecutor import re from collections import Counter from wordcloud import WordCloud import advertools as adv from collections import Counter # Page configuration st.set_page_config( layout="wide", page_title="محلل المواقع المتقدم | Website Analyzer Pro", page_icon="🔍", initial_sidebar_state="expanded" ) # Custom CSS st.markdown(""" """, unsafe_allow_html=True) class AdvancedWebsiteAnalyzer: def __init__(self): self.headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' } self.history = self.load_history() # [Previous methods remain the same until analyze_seo] async def analyze_seo(self, url): try: async with httpx.AsyncClient() as client: response = await client.get(url) soup = BeautifulSoup(response.text, 'html.parser') content_analysis = self._analyze_content(soup) links_analysis = self._analyze_links(soup) keywords_analysis = self._extract_keywords(soup) seo_analysis = { "تحليل العنوان": self._analyze_title(soup), "تحليل الوصف": self._analyze_description(soup), "تحليل الكلمات المفتاحية": keywords_analysis, "تحليل العناوين": self._analyze_headings(soup), "تحليل الروابط": links_analysis, "تحليل المحتوى": content_analysis, "تقييم SEO": self._calculate_seo_score(soup), "توصيات تحسين SEO": self._get_seo_recommendations(soup) } return seo_analysis except Exception as e: return {"error": f"خطأ في تحليل SEO: {str(e)}"} def _extract_keywords(self, soup): # Add implementation for keyword extraction pass def _calculate_seo_score(self, soup): # Add implementation for SEO scoring pass def _get_seo_recommendations(self, soup): # Add implementation for SEO recommendations pass def _analyze_content(self, soup): """ Analyzes webpage content for SEO factors """ try: text_content = ' '.join([p.text.strip() for p in soup.find_all(['p', 'div', 'article', 'section'])]) headings = {f'h{i}': len(soup.find_all(f'h{i}')) for i in range(1, 7)} words = text_content.split() word_count = len(words) readability_score = self._calculate_readability(text_content) keyword_density = self._calculate_keyword_density(text_content) images = soup.find_all('img') images_with_alt = len([img for img in images if img.get('alt')]) quality_score = self._calculate_content_quality_score( word_count, readability_score, images_with_alt, len(images), headings ) return { "إحصائيات المحتوى": { "عدد الكلمات": word_count, "مستوى القراءة": readability_score, "نسبة الصور مع نص بديل": f"{(images_with_alt/len(images)*100 if images else 0):.1f}%", "توزيع العناوين": headings, }, "تحليل الكلمات المفتاحية": { "كثافة الكلمات الرئيسية": keyword_density, "الكلمات الأكثر تكراراً": self._get_top_words(text_content, 5) }, "تقييم جودة المحتوى": { "الدرجة": quality_score, "التقييم": self._get_content_rating(quality_score), "التوصيات": self._get_content_recommendations( word_count, readability_score, images_with_alt, len(images), headings ) } } except Exception as e: return {"error": f"خطأ في تحليل المحتوى: {str(e)}"} def _calculate_readability(self, text): # Add implementation for readability calculation pass def _calculate_keyword_density(self, text): # Add implementation for keyword density calculation pass def _calculate_content_quality_score(self, word_count, readability, alt_images, total_images, headings): score = 100 if word_count < 300: score -= 20 elif word_count < 600: score -= 10 if readability < 40: score -= 15 elif readability < 60: score -= 10 if total_images > 0: alt_ratio = alt_images / total_images if alt_ratio < 0.5: score -= 15 elif alt_ratio < 0.8: score -= 10 if headings.get('h1', 0) == 0: score -= 10 if headings.get('h1', 0) > 1: score -= 5 if headings.get('h2', 0) == 0: score -= 5 return max(0, score) def _get_content_rating(self, score): if score >= 90: return "ممتاز" elif score >= 80: return "جيد جداً" elif score >= 70: return "جيد" elif score >= 60: return "مقبول" else: return "يحتاج تحسين" def _get_content_recommendations(self, word_count, readability, alt_images, total_images, headings): recommendations = [] if word_count < 300: recommendations.append({ "المشكلة": "محتوى قصير جداً", "الحل": "زيادة المحتوى إلى 300 كلمة على الأقل", "الأولوية": "عالية" }) if readability < 60: recommendations.append({ "المشكلة": "صعوبة قراءة المحتوى", "الحل": "تبسيط الجمل واستخدام لغة أسهل", "الأولوية": "متوسطة" }) if total_images > 0 and (alt_images / total_images) < 0.8: recommendations.append({ "المشكلة": "نقص في النصوص البديلة للصور", "الحل": "إضافة نص بديل وصفي لجميع الصور", "الأولوية": "عالية" }) if headings.get('h1', 0) != 1: recommendations.append({ "المشكلة": "عدد غير مناسب من عناوين H1", "الحل": "استخدام عنوان H1 واحد فقط للصفحة", "الأولوية": "عالية" }) return recommendations if recommendations else [{ "المشكلة": "لا توجد مشاكل واضحة", "الحل": "الاستمرار في تحديث المحتوى بشكل دوري", "الأولوية": "منخفضة" }] def _get_top_words(self, text, count=5): stop_words = set(['و', 'في', 'من', 'على', 'the', 'and', 'in', 'of', 'to']) words = text.lower().split() word_freq = Counter(word for word in words if word not in stop_words and len(word) > 2) return {word: count for word, count in word_freq.most_common(count)}