Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from loadimg import load_img
|
3 |
+
from transformers import AutoModelForImageSegmentation
|
4 |
+
import torch
|
5 |
+
from torchvision import transforms
|
6 |
+
from PIL import Image
|
7 |
+
import requests
|
8 |
+
from io import BytesIO
|
9 |
+
|
10 |
+
# إعداد الجهاز
|
11 |
+
torch.set_float32_matmul_precision("high")
|
12 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
13 |
+
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
14 |
+
)
|
15 |
+
birefnet.to("cuda")
|
16 |
+
|
17 |
+
transform_image = transforms.Compose(
|
18 |
+
[
|
19 |
+
transforms.Resize((1024, 1024)),
|
20 |
+
transforms.ToTensor(),
|
21 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
22 |
+
]
|
23 |
+
)
|
24 |
+
|
25 |
+
# دالة المعالجة
|
26 |
+
def process(image):
|
27 |
+
image_size = image.size
|
28 |
+
input_images = transform_image(image).unsqueeze(0).to("cuda")
|
29 |
+
with torch.no_grad():
|
30 |
+
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
31 |
+
pred = preds[0].squeeze()
|
32 |
+
pred_pil = transforms.ToPILImage()(pred)
|
33 |
+
mask = pred_pil.resize(image_size)
|
34 |
+
image.putalpha(mask)
|
35 |
+
return image
|
36 |
+
|
37 |
+
st.title("أداة إزالة الخلفية")
|
38 |
+
|
39 |
+
# واجهة المستخدم
|
40 |
+
tab = st.sidebar.selectbox("اختر طريقة الإدخال:", ["رفع صورة", "رابط صورة", "ملف"])
|
41 |
+
|
42 |
+
if tab == "رفع صورة":
|
43 |
+
uploaded_file = st.file_uploader("ارفع صورة:")
|
44 |
+
if uploaded_file is not None:
|
45 |
+
image = Image.open(uploaded_file).convert("RGB")
|
46 |
+
st.image(image, caption="الصورة الأصلية", use_column_width=True)
|
47 |
+
processed_image = process(image)
|
48 |
+
st.image(processed_image, caption="الصورة المعالجة", use_column_width=True)
|
49 |
+
|
50 |
+
elif tab == "رابط صورة":
|
51 |
+
url = st.text_input("أدخل رابط الصورة:")
|
52 |
+
if url:
|
53 |
+
try:
|
54 |
+
response = requests.get(url)
|
55 |
+
image = Image.open(BytesIO(response.content)).convert("RGB")
|
56 |
+
st.image(image, caption="الصورة الأصلية", use_column_width=True)
|
57 |
+
processed_image = process(image)
|
58 |
+
st.image(processed_image, caption="الصورة المعالجة", use_column_width=True)
|
59 |
+
except Exception as e:
|
60 |
+
st.error(f"خطأ أثناء تحميل الصورة: {e}")
|
61 |
+
|
62 |
+
elif tab == "ملف":
|
63 |
+
uploaded_file = st.file_uploader("ارفع ملف:")
|
64 |
+
if uploaded_file is not None:
|
65 |
+
image = Image.open(uploaded_file).convert("RGB")
|
66 |
+
processed_image = process(image)
|
67 |
+
output_path = uploaded_file.name.rsplit(".", 1)[0] + ".png"
|
68 |
+
processed_image.save(output_path)
|
69 |
+
st.image(processed_image, caption="الصورة المعالجة", use_column_width=True)
|
70 |
+
st.download_button("تحميل الصورة المعالجة", data=open(output_path, "rb"), file_name=output_path)
|