Spaces:
Paused
Paused
import numpy as np | |
import streamlit as st | |
import os | |
from dotenv import load_dotenv | |
import requests | |
# Load environment variables | |
load_dotenv() | |
# Hugging Face API URL and token | |
HUGGINGFACE_API_URL = "https://api-inference.huggingface.co/models/joermd/llma-speedy" | |
HUGGINGFACE_API_TOKEN = os.environ.get('HUGGINGFACEHUB_API_TOKEN') | |
# Random dog images for error messages | |
random_dog = [ | |
"0f476473-2d8b-415e-b944-483768418a95.jpg", | |
"1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg", | |
# Add more images as needed | |
] | |
def reset_conversation(): | |
'''Resets conversation''' | |
st.session_state.conversation = [] | |
st.session_state.messages = [] | |
return None | |
# Create sidebar controls | |
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5) | |
max_token_value = st.sidebar.slider('Select a max_token value', 1000, 9000, 5000) | |
st.sidebar.button('Reset Chat', on_click=reset_conversation) | |
# Set the model and display its name | |
model_name = "joermd/llma-speedy" | |
st.sidebar.write(f"You're now chatting with **{model_name}**") | |
st.sidebar.markdown("*Generated content may be inaccurate or false.*") | |
# Initialize chat history | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
# Display chat messages from history on app rerun | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Accept user input | |
if prompt := st.chat_input(f"Hi, I'm {model_name}, ask me a question"): | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
# Display assistant response | |
with st.chat_message("assistant"): | |
try: | |
headers = {"Authorization": f"Bearer {HUGGINGFACE_API_TOKEN}"} | |
payload = { | |
"inputs": prompt, | |
"parameters": {"temperature": temp_values, "max_new_tokens": max_token_value} | |
} | |
response = requests.post(HUGGINGFACE_API_URL, headers=headers, json=payload) | |
if response.status_code == 200: | |
result = response.json() | |
assistant_response = result.get("generated_text", "No response generated.") | |
else: | |
assistant_response = "Error: Unable to reach the model." | |
st.write(f"Status Code: {response.status_code}") | |
except Exception as e: | |
assistant_response = "π΅βπ« Connection issue! Try again later. Here's a πΆ:" | |
st.image(f'https://random.dog/{random_dog[np.random.randint(len(random_dog))]}') | |
st.write("Error message:") | |
st.write(e) | |
st.markdown(assistant_response) | |
st.session_state.messages.append({"role": "assistant", "content": assistant_response}) | |