Spaces:
Paused
Paused
import numpy as np | |
import streamlit as st | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import os | |
# Random dog images for error messages | |
random_dog = [ | |
"0f476473-2d8b-415e-b944-483768418a95.jpg", | |
"1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg", | |
# Add more images as needed | |
] | |
# Function to reset conversation | |
def reset_conversation(): | |
'''Resets conversation''' | |
st.session_state.conversation = [] | |
st.session_state.messages = [] | |
return None | |
# Sidebar controls | |
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5) | |
max_token_value = st.sidebar.slider('Select a max_token value', 1000, 9000, 5000) | |
st.sidebar.button('Reset Chat', on_click=reset_conversation) | |
# Initialize chat history | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
# Display chat messages from history on app rerun | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Set cache directory path to /data | |
cache_dir = "/data" # المسار المحدد للتخزين في مساحة Hugging Face | |
# Load model and tokenizer on-demand to save memory | |
if prompt := st.chat_input(f"مرحبا انا سبيدي , كيف استطيع مساعدتك ؟"): | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
# Load model only when user submits a prompt | |
try: | |
# Load the tokenizer and model with caching in the specified directory | |
tokenizer = AutoTokenizer.from_pretrained("sambanovasystems/SambaLingo-Arabic-Chat", cache_dir=cache_dir) | |
model = AutoModelForCausalLM.from_pretrained("sambanovasystems/SambaLingo-Arabic-Chat", cache_dir=cache_dir) | |
# Generate response | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate( | |
inputs.input_ids, | |
max_new_tokens=max_token_value, | |
temperature=temp_values, | |
do_sample=True | |
) | |
assistant_response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Clear memory (for CUDA) and delete the model to free up RAM | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
del model | |
except Exception as e: | |
assistant_response = "😵💫 Connection issue! Try again later. Here's a 🐶:" | |
st.image(f'https://random.dog/{random_dog[np.random.randint(len(random_dog))]}') | |
st.write("Error message:") | |
st.write(e) | |
# Display assistant response | |
with st.chat_message("assistant"): | |
st.markdown(assistant_response) | |
st.session_state.messages.append({"role": "assistant", "content": assistant_response}) |