Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -3,49 +3,74 @@ import streamlit as st
|
|
3 |
import torch
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
import os
|
|
|
6 |
# Random dog images for error messages
|
7 |
random_dog = [
|
8 |
"0f476473-2d8b-415e-b944-483768418a95.jpg",
|
9 |
"1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg",
|
10 |
# Add more images as needed
|
11 |
]
|
|
|
12 |
# Function to reset conversation
|
13 |
def reset_conversation():
|
14 |
'''Resets conversation'''
|
15 |
st.session_state.conversation = []
|
16 |
st.session_state.messages = []
|
17 |
return None
|
|
|
18 |
# Sidebar controls
|
19 |
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5)
|
20 |
max_token_value = st.sidebar.slider('Select a max_token value', 1000, 9000, 5000)
|
21 |
st.sidebar.button('Reset Chat', on_click=reset_conversation)
|
|
|
22 |
# Initialize chat history
|
23 |
if "messages" not in st.session_state:
|
24 |
st.session_state.messages = []
|
|
|
25 |
# Display chat messages from history on app rerun
|
26 |
for message in st.session_state.messages:
|
27 |
with st.chat_message(message["role"]):
|
28 |
st.markdown(message["content"])
|
|
|
29 |
# Set cache directory path to /data
|
30 |
cache_dir = "/data" # المسار المحدد للتخزين في مساحة Hugging Face
|
|
|
31 |
# Load model and tokenizer on-demand to save memory
|
32 |
if prompt := st.chat_input(f"مرحبا انا سبيدي , كيف استطيع مساعدتك ؟"):
|
33 |
with st.chat_message("user"):
|
34 |
st.markdown(prompt)
|
35 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
|
|
36 |
# Load model only when user submits a prompt
|
37 |
try:
|
38 |
# Load the tokenizer and model with caching in the specified directory
|
39 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
40 |
-
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
# Generate response
|
43 |
-
inputs = tokenizer(
|
44 |
outputs = model.generate(
|
45 |
inputs.input_ids,
|
46 |
max_new_tokens=max_token_value,
|
47 |
temperature=temp_values,
|
48 |
-
do_sample=True
|
|
|
|
|
49 |
)
|
50 |
assistant_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
51 |
|
@@ -55,10 +80,11 @@ if prompt := st.chat_input(f"مرحبا انا سبيدي , كيف استطيع
|
|
55 |
del model
|
56 |
|
57 |
except Exception as e:
|
58 |
-
assistant_response = "😵💫
|
59 |
st.image(f'https://random.dog/{random_dog[np.random.randint(len(random_dog))]}')
|
60 |
-
st.write("
|
61 |
st.write(e)
|
|
|
62 |
# Display assistant response
|
63 |
with st.chat_message("assistant"):
|
64 |
st.markdown(assistant_response)
|
|
|
3 |
import torch
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
import os
|
6 |
+
|
7 |
# Random dog images for error messages
|
8 |
random_dog = [
|
9 |
"0f476473-2d8b-415e-b944-483768418a95.jpg",
|
10 |
"1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg",
|
11 |
# Add more images as needed
|
12 |
]
|
13 |
+
|
14 |
# Function to reset conversation
|
15 |
def reset_conversation():
|
16 |
'''Resets conversation'''
|
17 |
st.session_state.conversation = []
|
18 |
st.session_state.messages = []
|
19 |
return None
|
20 |
+
|
21 |
# Sidebar controls
|
22 |
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5)
|
23 |
max_token_value = st.sidebar.slider('Select a max_token value', 1000, 9000, 5000)
|
24 |
st.sidebar.button('Reset Chat', on_click=reset_conversation)
|
25 |
+
|
26 |
# Initialize chat history
|
27 |
if "messages" not in st.session_state:
|
28 |
st.session_state.messages = []
|
29 |
+
|
30 |
# Display chat messages from history on app rerun
|
31 |
for message in st.session_state.messages:
|
32 |
with st.chat_message(message["role"]):
|
33 |
st.markdown(message["content"])
|
34 |
+
|
35 |
# Set cache directory path to /data
|
36 |
cache_dir = "/data" # المسار المحدد للتخزين في مساحة Hugging Face
|
37 |
+
|
38 |
# Load model and tokenizer on-demand to save memory
|
39 |
if prompt := st.chat_input(f"مرحبا انا سبيدي , كيف استطيع مساعدتك ؟"):
|
40 |
with st.chat_message("user"):
|
41 |
st.markdown(prompt)
|
42 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
43 |
+
|
44 |
# Load model only when user submits a prompt
|
45 |
try:
|
46 |
# Load the tokenizer and model with caching in the specified directory
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained("joermd/speedy-llama2", cache_dir=cache_dir)
|
48 |
+
model = AutoModelForCausalLM.from_pretrained(
|
49 |
+
"joermd/speedy-llama2",
|
50 |
+
cache_dir=cache_dir,
|
51 |
+
torch_dtype=torch.bfloat16,
|
52 |
+
device_map="auto"
|
53 |
+
)
|
54 |
+
|
55 |
+
# Prepare the system message and conversation
|
56 |
+
system_message = {
|
57 |
+
"role": "system",
|
58 |
+
"content": "You are a friendly chatbot who answers questions in Arabic."
|
59 |
+
}
|
60 |
+
messages = [system_message, {"role": "user", "content": prompt}]
|
61 |
+
|
62 |
+
# Create conversation prompt using chat template
|
63 |
+
conversation = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
64 |
|
65 |
# Generate response
|
66 |
+
inputs = tokenizer(conversation, return_tensors="pt")
|
67 |
outputs = model.generate(
|
68 |
inputs.input_ids,
|
69 |
max_new_tokens=max_token_value,
|
70 |
temperature=temp_values,
|
71 |
+
do_sample=True,
|
72 |
+
top_k=50,
|
73 |
+
top_p=0.95
|
74 |
)
|
75 |
assistant_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
76 |
|
|
|
80 |
del model
|
81 |
|
82 |
except Exception as e:
|
83 |
+
assistant_response = "😵💫 عذراً، حدث خطأ في الاتصال! حاول مرة أخرى لاحقاً. إليك صورة كلب 🐶:"
|
84 |
st.image(f'https://random.dog/{random_dog[np.random.randint(len(random_dog))]}')
|
85 |
+
st.write("رسالة الخطأ:")
|
86 |
st.write(e)
|
87 |
+
|
88 |
# Display assistant response
|
89 |
with st.chat_message("assistant"):
|
90 |
st.markdown(assistant_response)
|