Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -8,10 +8,8 @@ import os
|
|
8 |
random_dog = [
|
9 |
"0f476473-2d8b-415e-b944-483768418a95.jpg",
|
10 |
"1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg",
|
11 |
-
# Add more images as needed
|
12 |
]
|
13 |
|
14 |
-
# Function to reset conversation
|
15 |
def reset_conversation():
|
16 |
'''Resets conversation'''
|
17 |
st.session_state.conversation = []
|
@@ -33,7 +31,7 @@ for message in st.session_state.messages:
|
|
33 |
st.markdown(message["content"])
|
34 |
|
35 |
# Set cache directory path to /data
|
36 |
-
cache_dir = "/data"
|
37 |
|
38 |
# Load model and tokenizer on-demand to save memory
|
39 |
if prompt := st.chat_input(f"مرحبا انا سبيدي , كيف استطيع مساعدتك ؟"):
|
@@ -41,11 +39,20 @@ if prompt := st.chat_input(f"مرحبا انا سبيدي , كيف استطيع
|
|
41 |
st.markdown(prompt)
|
42 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
43 |
|
44 |
-
# Load model only when user submits a prompt
|
45 |
try:
|
46 |
-
# Load the tokenizer and model with
|
47 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
# Generate response
|
51 |
inputs = tokenizer(prompt, return_tensors="pt")
|
@@ -57,7 +64,7 @@ if prompt := st.chat_input(f"مرحبا انا سبيدي , كيف استطيع
|
|
57 |
)
|
58 |
assistant_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
59 |
|
60 |
-
# Clear memory
|
61 |
if torch.cuda.is_available():
|
62 |
torch.cuda.empty_cache()
|
63 |
del model
|
@@ -71,4 +78,4 @@ if prompt := st.chat_input(f"مرحبا انا سبيدي , كيف استطيع
|
|
71 |
# Display assistant response
|
72 |
with st.chat_message("assistant"):
|
73 |
st.markdown(assistant_response)
|
74 |
-
st.session_state.messages.append({"role": "assistant", "content": assistant_response})
|
|
|
8 |
random_dog = [
|
9 |
"0f476473-2d8b-415e-b944-483768418a95.jpg",
|
10 |
"1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg",
|
|
|
11 |
]
|
12 |
|
|
|
13 |
def reset_conversation():
|
14 |
'''Resets conversation'''
|
15 |
st.session_state.conversation = []
|
|
|
31 |
st.markdown(message["content"])
|
32 |
|
33 |
# Set cache directory path to /data
|
34 |
+
cache_dir = "/data"
|
35 |
|
36 |
# Load model and tokenizer on-demand to save memory
|
37 |
if prompt := st.chat_input(f"مرحبا انا سبيدي , كيف استطيع مساعدتك ؟"):
|
|
|
39 |
st.markdown(prompt)
|
40 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
41 |
|
|
|
42 |
try:
|
43 |
+
# Load the tokenizer and model with specific configuration
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
45 |
+
"joermd/llma-speedy",
|
46 |
+
cache_dir=cache_dir,
|
47 |
+
local_files_only=False # السماح بتحميل الملفات المتوفرة فقط
|
48 |
+
)
|
49 |
+
|
50 |
+
model = AutoModelForCausalLM.from_pretrained(
|
51 |
+
"joermd/llma-speedy",
|
52 |
+
cache_dir=cache_dir,
|
53 |
+
local_files_only=False, # السماح بتحميل الملفات المتوفرة فقط
|
54 |
+
ignore_missing_weights=True # تجاهل الأوزان المفقودة
|
55 |
+
)
|
56 |
|
57 |
# Generate response
|
58 |
inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
64 |
)
|
65 |
assistant_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
66 |
|
67 |
+
# Clear memory
|
68 |
if torch.cuda.is_available():
|
69 |
torch.cuda.empty_cache()
|
70 |
del model
|
|
|
78 |
# Display assistant response
|
79 |
with st.chat_message("assistant"):
|
80 |
st.markdown(assistant_response)
|
81 |
+
st.session_state.messages.append({"role": "assistant", "content": assistant_response})
|