Update app.py
Browse files
app.py
CHANGED
@@ -2,25 +2,33 @@
|
|
2 |
from flask import Flask, send_file, request, jsonify
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import torch
|
5 |
-
|
6 |
-
from flask_cors import CORS # إضافة دعم CORS
|
7 |
|
8 |
app = Flask(__name__)
|
9 |
-
CORS(app) # تفعيل CORS للسماح بالاتصال
|
10 |
|
11 |
-
# تحميل النموذج
|
12 |
-
|
13 |
-
tokenizer =
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
)
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
def generate_response(prompt):
|
22 |
"""Generate response from the model"""
|
|
|
23 |
try:
|
|
|
|
|
|
|
24 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
25 |
with torch.no_grad():
|
26 |
outputs = model.generate(
|
@@ -40,14 +48,10 @@ def generate_response(prompt):
|
|
40 |
|
41 |
@app.route('/')
|
42 |
def home():
|
43 |
-
|
44 |
-
return send_file('index.html')
|
45 |
-
except Exception as e:
|
46 |
-
print(f"خطأ في تحميل الصفحة: {str(e)}")
|
47 |
-
return "خطأ في تحميل الصفحة"
|
48 |
|
49 |
-
@app.route('/
|
50 |
-
def
|
51 |
try:
|
52 |
data = request.json
|
53 |
if not data:
|
@@ -67,5 +71,6 @@ def message():
|
|
67 |
print(f"خطأ في معالجة الرسالة: {str(e)}")
|
68 |
return jsonify({"response": "عذراً، حدث خطأ في معالجة رسالتك"}), 500
|
69 |
|
70 |
-
if __name__ ==
|
71 |
-
|
|
|
|
2 |
from flask import Flask, send_file, request, jsonify
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import torch
|
5 |
+
import gradio as gr
|
|
|
6 |
|
7 |
app = Flask(__name__)
|
|
|
8 |
|
9 |
+
# تحميل النموذج
|
10 |
+
model = None
|
11 |
+
tokenizer = None
|
12 |
+
|
13 |
+
def load_model():
|
14 |
+
global model, tokenizer
|
15 |
+
if model is None:
|
16 |
+
print("جاري تحميل النموذج...")
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained("amd/AMD-OLMo-1B")
|
18 |
+
model = AutoModelForCausalLM.from_pretrained(
|
19 |
+
"amd/AMD-OLMo-1B",
|
20 |
+
torch_dtype=torch.float16,
|
21 |
+
device_map="auto"
|
22 |
+
)
|
23 |
+
print("تم تحميل النموذج بنجاح!")
|
24 |
|
25 |
def generate_response(prompt):
|
26 |
"""Generate response from the model"""
|
27 |
+
global model, tokenizer
|
28 |
try:
|
29 |
+
if model is None:
|
30 |
+
load_model()
|
31 |
+
|
32 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
33 |
with torch.no_grad():
|
34 |
outputs = model.generate(
|
|
|
48 |
|
49 |
@app.route('/')
|
50 |
def home():
|
51 |
+
return send_file('index.html')
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
@app.route('/api/chat', methods=['POST'])
|
54 |
+
def chat():
|
55 |
try:
|
56 |
data = request.json
|
57 |
if not data:
|
|
|
71 |
print(f"خطأ في معالجة الرسالة: {str(e)}")
|
72 |
return jsonify({"response": "عذراً، حدث خطأ في معالجة رسالتك"}), 500
|
73 |
|
74 |
+
if __name__ == "__main__":
|
75 |
+
# إذا كنت تريد تشغيل التطبيق محلياً
|
76 |
+
app.run()
|