# app.py from flask import Flask, send_file, request, jsonify from transformers import AutoModelForCausalLM, AutoTokenizer import torch from functools import lru_cache import os app = Flask(__name__) @lru_cache(maxsize=1) def load_model(): """Load model and tokenizer with caching""" tokenizer = AutoTokenizer.from_pretrained("amd/AMD-OLMo-1B") model = AutoModelForCausalLM.from_pretrained( "amd/AMD-OLMo-1B", torch_dtype=torch.float16, device_map="auto" ) return model, tokenizer def generate_response(prompt, model, tokenizer): """Generate response from the model""" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model.generate( **inputs, max_length=200, num_return_sequences=1, temperature=0.7, top_p=0.9, repetition_penalty=1.2, pad_token_id=tokenizer.eos_token_id ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response.replace(prompt, "").strip() @app.route('/') def home(): return send_file('index.html') @app.route('/message', methods=['POST']) def message(): try: data = request.json user_message = data.get('message', '') if not user_message: return jsonify({"response": "عذراً، لم أفهم رسالتك"}) model, tokenizer = load_model() response = generate_response(user_message, model, tokenizer) return jsonify({"response": response}) except Exception as e: return jsonify({"response": f"عذراً، حدث خطأ: {str(e)}"}) if __name__ == '__main__': app.run(debug=True)