Spaces:
Runtime error
Runtime error
File size: 4,048 Bytes
9491afb f2953c9 9491afb 52168c1 9491afb 52168c1 1623898 9491afb a10736f 9491afb 2743076 52168c1 9491afb 52168c1 9491afb 52168c1 9491afb 52168c1 9491afb 52168c1 9491afb 8a1ff97 9491afb 52168c1 1623898 52168c1 1623898 b08b08c 8a1ff97 1623898 459deb9 1623898 8a1ff97 459deb9 1623898 9491afb 4833e32 52168c1 9491afb 52168c1 9491afb 459deb9 9491afb 2743076 52168c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import os
import random
from huggingface_hub import InferenceClient
import gradio as gr
#from utils import parse_action, parse_file_content, read_python_module_structure
from datetime import datetime
from PIL import Image
import agent
from models import models
import urllib.request
import uuid
import requests
import io
loaded_model=[]
for i,model in enumerate(models):
loaded_model.append(gr.load(f'models/{model}'))
print (loaded_model)
now = datetime.now()
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S")
client = InferenceClient(
"mistralai/Mixtral-8x7B-Instruct-v0.1"
)
############################################
model = gr.load("models/stabilityai/sdxl-turbo")
VERBOSE = True
MAX_HISTORY = 10000
#MODEL = "gpt-3.5-turbo" # "gpt-4"
history = []
def infer(txt):
return (model(txt))
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def run_gpt(
in_prompt,
history,
):
print(f'history :: {history}')
prompt=format_prompt(in_prompt,history)
seed = random.randint(1,1111111111111111)
print (seed)
generate_kwargs = dict(
temperature=1.0,
max_new_tokens=1048,
top_p=0.99,
repetition_penalty=1.0,
do_sample=True,
seed=seed,
)
content = agent.GENERATE_PROMPT + prompt
print(content)
#formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
#formatted_prompt = format_prompt(f'{content}', history)
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
resp = ""
for response in stream:
resp += response.token.text
history.append((in_prompt,resp))
return history
def run(purpose,history,model_drop):
print (history)
task=None
#if history:
# history=str(history).strip("[]")
#if not history:
# history = ""
#action_name, action_input = parse_action(line)
out_prompt = run_gpt(purpose,history)
#yield ([(purpose,out_prompt)],None)
yield (out_prompt,None)
#out_img = infer(out_prompt)
model=loaded_model[int(model_drop)]
out_img=model(out_prompt)
print(out_img)
url=f'https://johann22-chat-diffusion.hf.space/file={out_img}'
print(url)
uid = uuid.uuid4()
#urllib.request.urlretrieve(image, 'tmp.png')
#out=Image.open('tmp.png')
r = requests.get(url, stream=True)
if r.status_code == 200:
out = Image.open(io.BytesIO(r.content))
#yield ([(purpose,out_prompt)],out)
yield (out_prompt,out)
else:
yield ([(purpose,"an Error occured")],None)
################################################
with gr.Blocks() as iface:
gr.HTML("""<center><h1>Mixtral Chat Diffusion</h1><br><h3>This chatbot will generate images</h3></center>""")
#chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
with gr.Row():
with gr.Column():
chatbot=gr.Chatbot()
msg = gr.Textbox()
model_drop=gr.Dropdown(label="Diffusion Models", type="index", choices=[m for m in models], value=models[0])
with gr.Row():
submit_b = gr.Button()
stop_b = gr.Button("Stop")
clear = gr.ClearButton([msg, chatbot])
sumbox=gr.Image(label="Image")
sub_b = submit_b.click(run, [msg,chatbot,model_drop],[chatbot,sumbox])
sub_e = msg.submit(run, [msg, chatbot,model_drop], [chatbot,sumbox])
stop_b.click(None,None,None, cancels=[sub_b,sub_e])
iface.launch()
'''
gr.ChatInterface(
fn=run,
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
title="Mixtral 46.7B\nMicro-Agent\nInternet Search <br> development test",
examples=examples,
concurrency_limit=20,
).launch(show_api=False)
'''
|