File size: 3,178 Bytes
9491afb
 
 
 
 
 
 
 
 
 
e99a5b9
9491afb
 
 
 
e99a5b9
9491afb
 
 
 
e99a5b9
9491afb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6784e4
9491afb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea51b34
 
8222eec
5fa0297
ea51b34
 
9491afb
ea51b34
e99a5b9
e6784e4
ea51b34
 
 
 
 
 
 
 
9491afb
ea51b34
9491afb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d15428
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import os
import random
from huggingface_hub import InferenceClient
import gradio as gr
from datetime import datetime
import agent
from models import models
import urllib.request
import uuid
base_url="https://johann22-chat-diffusion.hf.space/" 
'''
loaded_model=[]
for i,model in enumerate(models):
    loaded_model.append(gr.load(f'models/{model}'))
print (loaded_model)
'''
now = datetime.now()
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S")

client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
model = gr.load("models/stabilityai/sdxl-turbo")
history = []

def infer(txt):
    return (model(txt))

def format_prompt(message, history):
  prompt = "<s>"
  for user_prompt, bot_response in history:
    prompt += f"[INST] {user_prompt} [/INST]"
    prompt += f" {bot_response}</s> "
  prompt += f"[INST] {message} [/INST]"
  return prompt

def run_gpt(in_prompt,history):
    prompt=format_prompt(in_prompt,history)
    seed = random.randint(1,1111111111111111)
    print (seed)
    generate_kwargs = dict(
        temperature=1.0,
        max_new_tokens=256,
        top_p=0.99,
        repetition_penalty=1.0,
        do_sample=True,
        seed=seed,
    )
    content = agent.GENERATE_PROMPT + prompt
    #print(content)
    stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
    resp = ""
    for response in stream:
        resp += response.token.text
    return resp


def run(purpose,history,model_drop):
    if history:
        history=str(history).strip("[]")
    if not history:
        history = ""
    try:
        out_prompt = run_gpt(purpose,history)
        out_prompt.strip()
        print (out_prompt)
    except Exception as e:
        out_prompt = f"An Error Occured generating the prompt \n {e}"
    yield ("",[(purpose,out_prompt)],None)
    try:
        #model=loaded_model[int(model_drop)]
        out_img=model(out_prompt)
        print(out_img)
        image=f'{base_url}file={out_img}'
        uid = uuid.uuid4()
        urllib.request.urlretrieve(image, f'{uid}.png')
        return ("",[(purpose,out_prompt)],f'{uid}.png')

    except Exception as e:
        print (e)
        #return ("", [(purpose,history)])
        return ("An Error Occured generating the image",[(purpose,out_prompt)],None)



################################################

with gr.Blocks() as iface:
    gr.HTML("""<center><h1>Chat Diffusion</h1><br><h3>This chatbot will generate images</h3></center>""")
    with gr.Row():
        with gr.Column():
            chatbot=gr.Chatbot()
            msg = gr.Textbox()
            model_drop=gr.Dropdown(label="Diffusion Models", type="index", choices=[m for m in models], value=models[0])
    with gr.Row():
        submit_b = gr.Button()
        stop_b = gr.Button("Stop")
        clear = gr.ClearButton([msg, chatbot])
    
    sumbox=gr.Image(label="Image",type="filepath")

        
    sub_b = submit_b.click(run, [msg,chatbot,model_drop],[msg,chatbot,sumbox])
    sub_e = msg.submit(run, [msg, chatbot,model_drop], [msg, chatbot,sumbox])
    stop_b.click(None,None,None, cancels=[sub_b,sub_e])
iface.queue().launch(share=False,show_api=False)