Spaces:
Runtime error
Runtime error
File size: 4,300 Bytes
9491afb f2953c9 9491afb 52168c1 9491afb 52168c1 1623898 c72498d 9491afb 5f72895 9491afb 5f72895 9491afb c72498d 9491afb 5f72895 52168c1 9491afb 52168c1 9491afb 52168c1 9491afb 048d51f 9491afb 5f72895 52168c1 1623898 52168c1 1623898 5f72895 8a1ff97 048d51f 1623898 459deb9 1623898 8a1ff97 048d51f 459deb9 1623898 9491afb f60f93c cd5da21 1039972 17dd268 cd5da21 9fbc7a1 17dd268 cd5da21 f60f93c 4ecb0d7 1039972 52168c1 9491afb 5f72895 3cc9495 9491afb 5f72895 9491afb 2743076 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import os
import random
from huggingface_hub import InferenceClient
import gradio as gr
#from utils import parse_action, parse_file_content, read_python_module_structure
from datetime import datetime
from PIL import Image
import agent
from models import models
import urllib.request
import uuid
import requests
import io
import chat_models
loaded_model=[]
chat_model=[]
for i,model in enumerate(models):
loaded_model.append(gr.load(f'models/{model}'))
print (loaded_model)
for i,model_c in enumerate(chat_models.models):
chat_model.append(model_c)
print (chat_model)
now = datetime.now()
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S")
#client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
history = []
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def run_gpt(in_prompt,history,model_drop):
client = InferenceClient(chat_models.models[int(model_drop)])
print(f'history :: {history}')
prompt=format_prompt(in_prompt,history)
seed = random.randint(1,1111111111111111)
print (seed)
generate_kwargs = dict(
temperature=1.0,
max_new_tokens=1048,
top_p=0.99,
repetition_penalty=1.0,
do_sample=True,
seed=seed,
)
content = agent.GENERATE_PROMPT + prompt
print(content)
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
resp = ""
for response in stream:
resp += response.token.text
return resp
def run(purpose,history,model_drop,chat_drop):
print (history)
task=None
#if history:
# history=str(history).strip("[]")
#if not history:
# history = ""
#action_name, action_input = parse_action(line)
out_prompt = run_gpt(purpose,history,model_drop)
#yield ([(purpose,out_prompt)],None)
history.append((purpose,out_prompt))
yield (history,None)
#out_img = infer(out_prompt)
model=loaded_model[int(model_drop)]
out_img=model(out_prompt)
print(out_img)
url=f'https://johann22-chat-diffusion.hf.space/file={out_img}'
print(url)
uid = uuid.uuid4()
#urllib.request.urlretrieve(image, 'tmp.png')
#out=Image.open('tmp.png')
r = requests.get(url, stream=True)
if r.status_code == 200:
out = Image.open(io.BytesIO(r.content))
#yield ([(purpose,out_prompt)],out)
yield (history,out)
else:
yield ([(purpose,"an Error occured")],None)
################################################
style="""
.top_head{
background: no-repeat;
background-image: url(https://huggingface.co/spaces/johann22/chat-diffusion/resolve/main/image.png);
background-position-y: bottom;
height: 180px;
background-position-x: center;
}
.top_h1{
color: white!important;
-webkit-text-stroke-width: medium;
}
"""
with gr.Blocks(css=style) as iface:
gr.HTML("""<div class="top_head"><center><br><h1 class="top_h1">Mixtral Chat Diffusion</h1><br><h3 class="top_h1">This chatbot will generate images</h3></center></div?""")
#chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
with gr.Row():
with gr.Column(scale=1):
chatbot=gr.Chatbot(show_copy_button=True, layout='panel')
msg = gr.Textbox()
model_drop=gr.Dropdown(label="Diffusion Models", type="index", choices=[m for m in models], value=models[0])
chat_model_drop=gr.Dropdown(label="Chatbot Models", type="index", choices=[m for m in chat_models.models], value=chat_models.models[0])
with gr.Group():
with gr.Row():
submit_b = gr.Button()
stop_b = gr.Button("Stop")
clear = gr.ClearButton([msg, chatbot])
with gr.Column(scale=2):
sumbox=gr.Image(label="Image")
sub_b = submit_b.click(run, [msg,chatbot,model_drop,chat_model_drop],[chatbot,sumbox])
sub_e = msg.submit(run, [msg, chatbot,model_drop,chat_model_drop], [chatbot,sumbox])
stop_b.click(None,None,None, cancels=[sub_b,sub_e])
iface.launch()
|