Spaces:
Runtime error
Runtime error
import os | |
import random | |
from huggingface_hub import InferenceClient | |
import gradio as gr | |
from datetime import datetime | |
import agent | |
from models import models | |
import urllib.request | |
import uuid | |
base_url="https://johann22-chat-diffusion.hf.space/" | |
loaded_model=[] | |
for i,model in enumerate(models): | |
loaded_model.append(gr.load(f'models/{model}')) | |
print (loaded_model) | |
now = datetime.now() | |
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S") | |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") | |
#model = gr.load("models/stabilityai/sdxl-turbo") | |
history = [] | |
def infer(txt): | |
return (model(txt)) | |
def format_prompt(message, history): | |
prompt = "<s>" | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST]" | |
prompt += f" {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
def run_gpt(in_prompt,history): | |
prompt=format_prompt(in_prompt,history) | |
seed = random.randint(1,1111111111111111) | |
print (seed) | |
generate_kwargs = dict( | |
temperature=1.0, | |
max_new_tokens=256, | |
top_p=0.99, | |
repetition_penalty=1.0, | |
do_sample=True, | |
seed=seed, | |
) | |
content = agent.GENERATE_PROMPT + prompt | |
#print(content) | |
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
resp = "" | |
for response in stream: | |
resp += response.token.text | |
return resp | |
def run(purpose,history,model_drop): | |
if history: | |
history=str(history).strip("[]") | |
if not history: | |
history = "" | |
try: | |
out_prompt = run_gpt(purpose,history) | |
out_prompt.strip() | |
print (out_prompt) | |
except Exception as e: | |
out_prompt = f"An Error Occured generating the prompt \n {e}" | |
yield ("",[(purpose,out_prompt)],None) | |
try: | |
model=loaded_model[int(model_drop)] | |
out_img=model(out_prompt) | |
print(out_img) | |
image=f'{base_url}file={out_img}' | |
uid = uuid.uuid4() | |
urllib.request.urlretrieve(image, f'{uid}.png') | |
return ("",[(purpose,out_prompt)],f'{uid}.png') | |
except Exception as e: | |
print (e) | |
#return ("", [(purpose,history)]) | |
return ("An Error Occured generating the image",[(purpose,out_prompt)],None) | |
################################################ | |
with gr.Blocks() as iface: | |
gr.HTML("""<center><h1>Chat Diffusion</h1><br><h3>This chatbot will generate images</h3></center>""") | |
with gr.Row(): | |
with gr.Column(): | |
chatbot=gr.Chatbot() | |
msg = gr.Textbox() | |
model_drop=gr.Dropdown(label="Diffusion Models", type="index", choices=[m for m in models], value=models[0]) | |
with gr.Row(): | |
submit_b = gr.Button() | |
stop_b = gr.Button("Stop") | |
clear = gr.ClearButton([msg, chatbot]) | |
sumbox=gr.Image(label="Image",type="filepath") | |
sub_b = submit_b.click(run, [msg,chatbot,model_drop],[msg,chatbot,sumbox]) | |
sub_e = msg.submit(run, [msg, chatbot,model_drop], [msg, chatbot,sumbox]) | |
stop_b.click(None,None,None, cancels=[sub_b,sub_e]) | |
iface.queue().launch(share=True,show_api=False) | |