import os import random from huggingface_hub import InferenceClient import gradio as gr #from utils import parse_action, parse_file_content, read_python_module_structure from datetime import datetime from PIL import Image import agent from models import models import urllib.request import uuid import requests import io import chat_models loaded_model=[] chat_model=[] for i,model in enumerate(models): loaded_model.append(gr.load(f'models/{model}')) print (loaded_model) for i,model_c in enumerate(chat_models.models): chat_model.append(model_c) print (chat_model) now = datetime.now() date_time_str = now.strftime("%Y-%m-%d %H:%M:%S") #client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") history = [] def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def run_gpt(in_prompt,history,model_drop): client = InferenceClient(chat_models.models[int(model_drop)]) print(f'history :: {history}') prompt=format_prompt(in_prompt,history) seed = random.randint(1,1111111111111111) print (seed) generate_kwargs = dict( temperature=1.0, max_new_tokens=1048, top_p=0.99, repetition_penalty=1.0, do_sample=True, seed=seed, ) content = agent.GENERATE_PROMPT + prompt print(content) stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False) resp = "" for response in stream: resp += response.token.text return resp def run(purpose,history,model_drop,chat_drop): print (history) task=None #if history: # history=str(history).strip("[]") #if not history: # history = "" #action_name, action_input = parse_action(line) out_prompt = run_gpt(purpose,history,model_drop) #yield ([(purpose,out_prompt)],None) history.append((purpose,out_prompt)) yield (history,None) #out_img = infer(out_prompt) model=loaded_model[int(model_drop)] out_img=model(out_prompt) print(out_img) url=f'https://johann22-chat-diffusion.hf.space/file={out_img}' print(url) uid = uuid.uuid4() #urllib.request.urlretrieve(image, 'tmp.png') #out=Image.open('tmp.png') r = requests.get(url, stream=True) if r.status_code == 200: out = Image.open(io.BytesIO(r.content)) #yield ([(purpose,out_prompt)],out) yield (history,out) else: yield ([(purpose,"an Error occured")],None) ################################################ style=""" .top_head{ background: no-repeat; background-image: url(https://huggingface.co/spaces/johann22/chat-diffusion/resolve/main/image.png); background-position-y: bottom; height: 180px; background-position-x: center; } .top_h1{ color: white!important; -webkit-text-stroke-width: medium; } """ with gr.Blocks(css=style) as iface: gr.HTML("""

Mixtral Chat Diffusion


This chatbot will generate images