Spaces:
Runtime error
Runtime error
File size: 4,296 Bytes
1d3019d fd7b07a 1d3019d b294aba 1d3019d b294aba 1d3019d b294aba 1d3019d 974882e 1d3019d 974882e 1d3019d 974882e 1d3019d 974882e 1d3019d 974882e 1d3019d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import os
import random
from huggingface_hub import InferenceClient
import gradio as gr
from datetime import datetime
from PIL import Image
import agent
from models import models
import urllib.request
import uuid
import requests
import io
loaded_model=[]
for i,model in enumerate(models):
loaded_model.append(gr.load(f'models/{model}'))
print (loaded_model)
now = datetime.now()
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S")
client = InferenceClient(
"mistralai/Mixtral-8x7B-Instruct-v0.1"
)
history = []
max_prompt=1000
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def condense(in_prompt):
seed = random.randint(1,1111111111111111)
print (seed)
generate_kwargs = dict(
temperature=1.0,
max_new_tokens=512,
top_p=0.99,
repetition_penalty=1.0,
do_sample=True,
seed=seed,
)
content = agent.CONDENSE_PROMPT + prompt
print(f'CONDENSED:: {content}')
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
resp = ""
for response in stream:
resp += response.token.text
return resp
def run_gpt(in_prompt,history,):
if len(in_prompt)>max_prompt:
in_prompt = condense(in_prompt)
print(f'history :: {history}')
prompt=format_prompt(in_prompt,history)
seed = random.randint(1,1111111111111111)
print (seed)
generate_kwargs = dict(
temperature=1.0,
max_new_tokens=1048,
top_p=0.99,
repetition_penalty=1.0,
do_sample=True,
seed=seed,
)
content = agent.GENERATE_PROMPT + prompt
print(content)
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
resp = ""
for response in stream:
resp += response.token.text
return resp
def run(purpose,history,model_drop):
print (history)
#print(purpose)
#print(hist)
task=None
#if history:
# history=str(history).strip("[]")
#if not history:
# history = ""
#action_name, action_input = parse_action(line)
out_prompt = run_gpt(
purpose,
history,
)
yield ([(purpose,out_prompt)],None)
#out_img = infer(out_prompt)
model=loaded_model[int(model_drop)]
out_img=model(out_prompt)
print(out_img)
url=f'https://johann22-mixtral-diffusion.hf.space/file={out_img}'
print(url)
uid = uuid.uuid4()
#urllib.request.urlretrieve(image, 'tmp.png')
#out=Image.open('tmp.png')
r = requests.get(url, stream=True)
if r.status_code == 200:
out = Image.open(io.BytesIO(r.content))
yield ([(purpose,out_prompt)],out)
#return ([(purpose,history)])
################################################
with gr.Blocks() as iface:
gr.HTML("""<center><h1>Chat Diffusion</h1><br><h3>This chatbot will generate images</h3></center>""")
#chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
with gr.Row():
with gr.Column(scale=1):
chatbot=gr.Chatbot()
msg = gr.Textbox()
model_drop=gr.Dropdown(label="Diffusion Models", type="index", choices=[m for m in models], value=models[0])
with gr.Group():
submit_b = gr.Button()
with gr.Row():
stop_b = gr.Button("Stop")
clear = gr.ClearButton([msg, chatbot])
with gr.Column(scale=2):
im_out=gr.Image(label="Image")
sub_b = submit_b.click(run, [msg,chatbot,model_drop],[chatbot,im_out])
sub_e = msg.submit(run, [msg, chatbot,model_drop], [chatbot,im_out])
stop_b.click(None,None,None, cancels=[sub_b,sub_e])
iface.launch()
'''
gr.ChatInterface(
fn=run,
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
title="Mixtral 46.7B\nMicro-Agent\nInternet Search <br> development test",
examples=examples,
concurrency_limit=20,
).launch(show_api=False)
''' |