Spaces:
Running
Running
File size: 15,210 Bytes
f34a6fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
import requests
from bs4 import BeautifulSoup
import pandas as pd
import torch
from transformers import pipeline
from sentence_transformers import SentenceTransformer, util
import concurrent.futures
import time
import sys
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from transformers import AutoTokenizer, AutoModel
import numpy as np
from scipy import stats
from PyDictionary import PyDictionary
import matplotlib.pyplot as plt
from scipy import stats
import litellm
import re
import sentencepiece
import random
def score_with_llm(title, topic, llm_model):
prompt = f"""Evaluate the relevance of the following article to the topic '{topic}'.
Article title: {title}
Give a final relevance score between 0 and 1, where 1 is very relevant and 0 is not relevant at all.
Respond only with a number between 0 and 1."""
try:
response = litellm.completion(
model=llm_model,
messages=[{"role": "user", "content": prompt}],
max_tokens=10
)
score_match = re.search(r'\d+(\.\d+)?', response.choices[0].message.content.strip())
if score_match:
score = float(score_match.group())
print(f"Score LLM : {score}")
return max(0, min(score, 1))
else:
print(f"Could not extract a score from LLM response: {response.choices[0].message.content}")
return None
except Exception as e:
print(f"Error in scoring with LLM {llm_model}: {str(e)}")
return None
def expand_keywords_llm(keyword, max_synonyms=3, llm_model="ollama/qwen2"):
prompt = f"""Please provide up to {max_synonyms} synonyms or closely related terms for the word or phrase: "{keyword}".
Return only the list of synonyms, separated by commas, without any additional explanation."""
try:
response = litellm.completion(
model=llm_model,
messages=[{"role": "user", "content": prompt}],
max_tokens=50
)
synonyms = [s.strip() for s in response.choices[0].message.content.split(',')]
return [keyword] + synonyms[:max_synonyms]
except Exception as e:
print(f"Error in expanding keywords with LLM {llm_model}: {str(e)}")
return [keyword]
# Fonction pour obtenir les liens de la page d'accueil
def get_homepage_links(url):
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
links = soup.find_all('a', href=True)
return [(link.text.strip(), link['href']) for link in links if link.text.strip()]
# Fonction pour obtenir le contenu d'un article
def get_article_content(url):
try:
print(f"Récupération du contenu de : {url}")
response = requests.get(url)
print(f"Taille de la réponse HTTP : {len(response.content)} octets") # Affiche le nombre d'octets de la réponse HTTP
soup = BeautifulSoup(response.text, 'html.parser')
print(f"Taille de l'objet soup : {sys.getsizeof(soup)} octets") # Affiche la taille en mémoire de l'objet soup
article = soup.find('article')
if article:
paragraphs = article.find_all('p')
content = ' '.join([p.text for p in paragraphs])
print(f"Paragraphes récupéré : {len(content)} caractères")
return content
print("Aucun contenu d'article trouvé")
return ""
except Exception as e:
print(f"Erreur lors de la récupération du contenu : {str(e)}")
return ""
# Fonction pour l'analyse zero-shot
def zero_shot_analysis(text, topic, classifier):
if not text:
print("Texte vide pour l'analyse zero-shot")
return 0.0
result = classifier(text, candidate_labels=[topic, f"not {topic}"], multi_label=False)
print(f"Score zero-shot : {result['scores'][0]}")
return result['scores'][0]
# Fonction pour l'analyse par embeddings
def embedding_analysis(text, topic_embedding, model):
if not text:
print("Texte vide pour l'analyse par embeddings")
return 0.0
text_embedding = model.encode([text], convert_to_tensor=True)
similarity = util.pytorch_cos_sim(text_embedding, topic_embedding).item()
print(f"Score embedding : {similarity}")
return similarity
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
#import nltk
#from nltk.corpus import wordnet
#nltk.download('wordnet')
def preprocess_text(text):
# Tokenize the text
tokens = text.lower().split()
# Expand each token with its synonyms
expanded_tokens = []
for token in tokens:
synonyms = set()
for syn in wordnet.synsets(token):
for lemma in syn.lemmas():
synonyms.add(lemma.name())
expanded_tokens.extend(list(synonyms))
return ' '.join(expanded_tokens)
def improved_tfidf_similarity(texts, query):
# Preprocess texts and query
preprocessed_texts = [preprocess_text(text) for text in texts]
preprocessed_query = preprocess_text(query)
# Combine texts and query for vectorization
all_texts = preprocessed_texts + [preprocessed_query]
# Use TfidfVectorizer with custom parameters
vectorizer = TfidfVectorizer(ngram_range=(1, 2), min_df=1, smooth_idf=True)
tfidf_matrix = vectorizer.fit_transform(all_texts)
# Calculate cosine similarity
cosine_similarities = cosine_similarity(tfidf_matrix[-1], tfidf_matrix[:-1]).flatten()
# Normalize similarities to avoid zero scores
normalized_similarities = (cosine_similarities - cosine_similarities.min()) / (cosine_similarities.max() - cosine_similarities.min())
return normalized_similarities
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
def improved_tfidf_similarity_v2(texts, query):
# Combine texts and query, treating each word or phrase as a separate document
all_docs = [word.strip() for text in texts for word in text.split(',')] + [word.strip() for word in query.split(',')]
# Create TF-IDF matrix
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(all_docs)
# Calculate document vectors by summing the TF-IDF vectors of their words
doc_vectors = []
query_vector = np.zeros((1, tfidf_matrix.shape[1]))
current_doc = 0
for i, doc in enumerate(all_docs):
if i < len(all_docs) - len(query.split(',')): # If it's part of the texts
if current_doc == len(texts):
break
if doc in texts[current_doc]:
doc_vectors.append(tfidf_matrix[i].toarray())
else:
current_doc += 1
doc_vectors.append(tfidf_matrix[i].toarray())
else: # If it's part of the query
query_vector += tfidf_matrix[i].toarray()
doc_vectors = np.array([np.sum(doc, axis=0) for doc in doc_vectors])
# Calculate cosine similarity
similarities = cosine_similarity(query_vector, doc_vectors).flatten()
# Normalize similarities to avoid zero scores
normalized_similarities = (similarities - similarities.min()) / (similarities.max() - similarities.min() + 1e-8)
return normalized_similarities
# Example usage:
# texts = ["longevity, health, aging", "computer science, AI"]
# query = "longevity, life extension, anti-aging"
# results = improved_tfidf_similarity_v2(texts, query)
# print(results)
# Nouvelles fonctions
def tfidf_similarity(texts, query):
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(texts + [query])
cosine_similarities = cosine_similarity(tfidf_matrix[-1], tfidf_matrix[:-1]).flatten()
return cosine_similarities
def bert_similarity(texts, query, model_name='bert-base-uncased'):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
def get_embedding(text):
inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
return outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
query_embedding = get_embedding(query)
text_embeddings = [get_embedding(text) for text in texts]
similarities = [cosine_similarity([query_embedding], [text_embedding])[0][0] for text_embedding in text_embeddings]
return similarities
# Fonction principale d'analyse modifiée
def analyze_link(title, link, topic, zero_shot_classifiers, embedding_models, expanded_query, llm_models, testcontent):
print(f"\nAnalyse de : {title}")
results = {
"Titre": title,
#"TF-IDF (titre)": improved_tfidf_similarity_v2([title], expanded_query)[0],
#"BERT (titre)": bert_similarity([title], expanded_query)[0],
}
# Zero-shot analysis
for name, classifier in zero_shot_classifiers.items():
results[f"Zero-shot (titre) - {name}"] = zero_shot_analysis(title, topic, classifier)
# Embedding analysis
for name, model in embedding_models.items():
topic_embedding = model.encode([expanded_query], convert_to_tensor=True)
results[f"Embeddings (titre) - {name}"] = embedding_analysis(title, topic_embedding, model)
# LLM analysis
for model in llm_models:
results[f"LLM Score - {model}"] = score_with_llm(title, topic, model)
if testcontent:
content = get_article_content(link)
#results["TF-IDF (contenu)"] = improved_tfidf_similarity_v2([content], expanded_query)[0]
#results["BERT (contenu)"]= bert_similarity([content], expanded_query)[0]
# Zero-shot analysis
for name, classifier in zero_shot_classifiers.items():
results[f"Zero-shot (contenu) - {name}"] = zero_shot_analysis(content, topic, classifier)
# Embedding analysis
for name, model in embedding_models.items():
topic_embedding = model.encode([expanded_query], convert_to_tensor=True)
results[f"Embeddings (contenu) - {name}"] = embedding_analysis(content, topic_embedding, model)
# LLM analysis
for model in llm_models:
results[f"LLM Content Score - {model}"] = score_with_llm(content, topic, model)
return results
from scipy import stats
def evaluate_ranking(reference_data_valid, reference_data_rejected, method_scores, threshold, silent):
simple_score = 0
true_positives = 0
false_positives = 0
true_negatives = 0
false_negatives = 0
# Créer une liste de tous les éléments avec leur statut (1 pour valide, 0 pour rejeté)
all_items = [(item, 1) for item in reference_data_valid] + [(item, 0) for item in reference_data_rejected]
# Trier les éléments selon leur score dans la méthode
all_items_temp = all_items.copy()
# correct false positive if method spit out same score for all
#random.shuffle(all_items_temp)
all_items_temp.reverse()
sorted_method = sorted([(item, method_scores.get(item, 0)) for item, _ in all_items_temp],
key=lambda x: x[1], reverse=True)
# Créer des listes pour le calcul de la corrélation de Spearman
reference_ranks = []
method_ranks = []
for i, (item, status) in enumerate(all_items):
method_score = method_scores.get(item, 0)
method_rank = next(j for j, (it, score) in enumerate(sorted_method) if it == item)
reference_ranks.append(i)
method_ranks.append(method_rank)
if status == 1: # Item valide
if method_score >= threshold:
simple_score += 1
true_positives += 1
else:
simple_score -= 1
false_negatives += 1
else: # Item rejeté
if method_score < threshold:
simple_score += 1
true_negatives += 1
else:
simple_score -= 1
false_positives += 1
# Calculer le coefficient de corrélation de Spearman
if not silent:
print("+++")
print(reference_ranks)
print("---")
print(method_ranks)
spearman_corr, _ = stats.spearmanr(reference_ranks, method_ranks)
# Calculer la précision, le rappel et le F1-score
precision = true_positives / (true_positives + false_positives) if (true_positives + false_positives) > 0 else 0
recall = true_positives / (true_positives + false_negatives) if (true_positives + false_negatives) > 0 else 0
f1_score = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
return {
"simple_score": simple_score,
"spearman_correlation": spearman_corr,
"precision": precision,
"recall": recall,
"f1_score": f1_score,
}
def find_optimal_threshold(reference_data_valid, reference_data_rejected, method_scores):
best_score = float('-inf')
best_threshold = 0
for threshold in np.arange(0, 1.05, 0.05):
result = evaluate_ranking(
reference_data_valid,
reference_data_rejected,
method_scores,
threshold, True
)
if result['simple_score'] > best_score:
best_score = result['simple_score']
best_threshold = threshold
return best_threshold
def reset_cuda_context():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
if torch.cuda.is_available():
torch.cuda.set_device(torch.cuda.current_device())
torch.cuda.synchronize()
import gc
def clear_models():
global zero_shot_classifiers, embedding_models_dict, bert_models, tfidf_objects
for classifier in zero_shot_classifiers.values():
del classifier
zero_shot_classifiers.clear()
for model in embedding_models_dict.values():
del model
embedding_models_dict.clear()
for model in bert_models:
del model
bert_models.clear()
for vectorizer in tfidf_objects:
del vectorizer
tfidf_objects.clear()
torch.cuda.empty_cache()
gc.collect()
def clear_globals():
for name in list(globals()):
if isinstance(globals()[name], (torch.nn.Module, torch.Tensor)):
del globals()[name]
def release_vram(zero_shot_classifiers, embedding_models, bert_models, tfidf_objects):
# Supprimer les objets zero-shot classifiers
for model in zero_shot_classifiers.values():
del model
# Supprimer les objets embedding models
for model in embedding_models.values():
del model
# Supprimer les objets bert models
for model in bert_models:
del model
# Supprimer les objets tfidf objects
for obj in tfidf_objects:
del obj
# Vider le cache de la mémoire GPU
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
clear_globals()
reset_cuda_context()
def load_finetuned_model(model_path):
checkpoint = torch.load(model_path)
base_model = AutoModel.from_pretrained(checkpoint['base_model_name'])
model = EmbeddingModel(base_model)
model.load_state_dict(checkpoint['model_state_dict'])
return model
|