File size: 15,210 Bytes
f34a6fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import requests
from bs4 import BeautifulSoup
import pandas as pd
import torch
from transformers import pipeline
from sentence_transformers import SentenceTransformer, util
import concurrent.futures
import time
import sys
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from transformers import AutoTokenizer, AutoModel
import numpy as np
from scipy import stats
from PyDictionary import PyDictionary
import matplotlib.pyplot as plt
from scipy import stats
import litellm
import re
import sentencepiece
import random

def score_with_llm(title, topic, llm_model):
    prompt = f"""Evaluate the relevance of the following article to the topic '{topic}'.
Article title: {title}
Give a final relevance score between 0 and 1, where 1 is very relevant and 0 is not relevant at all.
Respond only with a number between 0 and 1."""

    try:
        response = litellm.completion(
            model=llm_model,
            messages=[{"role": "user", "content": prompt}],
            max_tokens=10
        )

        score_match = re.search(r'\d+(\.\d+)?', response.choices[0].message.content.strip())
        if score_match:
            score = float(score_match.group())
            print(f"Score LLM : {score}")
            return max(0, min(score, 1))
        else:
            print(f"Could not extract a score from LLM response: {response.choices[0].message.content}")
            return None
    except Exception as e:
        print(f"Error in scoring with LLM {llm_model}: {str(e)}")
        return None

def expand_keywords_llm(keyword, max_synonyms=3, llm_model="ollama/qwen2"):
    prompt = f"""Please provide up to {max_synonyms} synonyms or closely related terms for the word or phrase: "{keyword}".
    Return only the list of synonyms, separated by commas, without any additional explanation."""

    try:
        response = litellm.completion(
            model=llm_model,
            messages=[{"role": "user", "content": prompt}],
            max_tokens=50
        )

        synonyms = [s.strip() for s in response.choices[0].message.content.split(',')]
        return [keyword] + synonyms[:max_synonyms]
    except Exception as e:
        print(f"Error in expanding keywords with LLM {llm_model}: {str(e)}")
        return [keyword]

# Fonction pour obtenir les liens de la page d'accueil
def get_homepage_links(url):
    response = requests.get(url)
    soup = BeautifulSoup(response.text, 'html.parser')
    links = soup.find_all('a', href=True)
    return [(link.text.strip(), link['href']) for link in links if link.text.strip()]

# Fonction pour obtenir le contenu d'un article
def get_article_content(url):
    try:
        print(f"Récupération du contenu de : {url}")
        response = requests.get(url)
        print(f"Taille de la réponse HTTP : {len(response.content)} octets")  # Affiche le nombre d'octets de la réponse HTTP
        soup = BeautifulSoup(response.text, 'html.parser')
        print(f"Taille de l'objet soup : {sys.getsizeof(soup)} octets")  # Affiche la taille en mémoire de l'objet soup
        article = soup.find('article')
        if article:
            paragraphs = article.find_all('p')
            content = ' '.join([p.text for p in paragraphs])
            print(f"Paragraphes récupéré : {len(content)} caractères")
            return content
        print("Aucun contenu d'article trouvé")
        return ""
    except Exception as e:
        print(f"Erreur lors de la récupération du contenu : {str(e)}")
        return ""

# Fonction pour l'analyse zero-shot
def zero_shot_analysis(text, topic, classifier):
    if not text:
        print("Texte vide pour l'analyse zero-shot")
        return 0.0
    result = classifier(text, candidate_labels=[topic, f"not {topic}"], multi_label=False)
    print(f"Score zero-shot : {result['scores'][0]}")
    return result['scores'][0]

# Fonction pour l'analyse par embeddings
def embedding_analysis(text, topic_embedding, model):
    if not text:
        print("Texte vide pour l'analyse par embeddings")
        return 0.0
    text_embedding = model.encode([text], convert_to_tensor=True)
    similarity = util.pytorch_cos_sim(text_embedding, topic_embedding).item()
    print(f"Score embedding : {similarity}")
    return similarity

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
#import nltk
#from nltk.corpus import wordnet
#nltk.download('wordnet')

def preprocess_text(text):
    # Tokenize the text
    tokens = text.lower().split()
    # Expand each token with its synonyms
    expanded_tokens = []
    for token in tokens:
        synonyms = set()
        for syn in wordnet.synsets(token):
            for lemma in syn.lemmas():
                synonyms.add(lemma.name())
        expanded_tokens.extend(list(synonyms))
    return ' '.join(expanded_tokens)

def improved_tfidf_similarity(texts, query):
    # Preprocess texts and query
    preprocessed_texts = [preprocess_text(text) for text in texts]
    preprocessed_query = preprocess_text(query)

    # Combine texts and query for vectorization
    all_texts = preprocessed_texts + [preprocessed_query]

    # Use TfidfVectorizer with custom parameters
    vectorizer = TfidfVectorizer(ngram_range=(1, 2), min_df=1, smooth_idf=True)
    tfidf_matrix = vectorizer.fit_transform(all_texts)

    # Calculate cosine similarity
    cosine_similarities = cosine_similarity(tfidf_matrix[-1], tfidf_matrix[:-1]).flatten()

    # Normalize similarities to avoid zero scores
    normalized_similarities = (cosine_similarities - cosine_similarities.min()) / (cosine_similarities.max() - cosine_similarities.min())

    return normalized_similarities

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np

def improved_tfidf_similarity_v2(texts, query):
    # Combine texts and query, treating each word or phrase as a separate document
    all_docs = [word.strip() for text in texts for word in text.split(',')] + [word.strip() for word in query.split(',')]

    # Create TF-IDF matrix
    vectorizer = TfidfVectorizer()
    tfidf_matrix = vectorizer.fit_transform(all_docs)

    # Calculate document vectors by summing the TF-IDF vectors of their words
    doc_vectors = []
    query_vector = np.zeros((1, tfidf_matrix.shape[1]))

    current_doc = 0
    for i, doc in enumerate(all_docs):
        if i < len(all_docs) - len(query.split(',')):  # If it's part of the texts
            if current_doc == len(texts):
                break
            if doc in texts[current_doc]:
                doc_vectors.append(tfidf_matrix[i].toarray())
            else:
                current_doc += 1
                doc_vectors.append(tfidf_matrix[i].toarray())
        else:  # If it's part of the query
            query_vector += tfidf_matrix[i].toarray()

    doc_vectors = np.array([np.sum(doc, axis=0) for doc in doc_vectors])

    # Calculate cosine similarity
    similarities = cosine_similarity(query_vector, doc_vectors).flatten()

    # Normalize similarities to avoid zero scores
    normalized_similarities = (similarities - similarities.min()) / (similarities.max() - similarities.min() + 1e-8)

    return normalized_similarities

# Example usage:
# texts = ["longevity, health, aging", "computer science, AI"]
# query = "longevity, life extension, anti-aging"
# results = improved_tfidf_similarity_v2(texts, query)
# print(results)

# Nouvelles fonctions
def tfidf_similarity(texts, query):
    vectorizer = TfidfVectorizer()
    tfidf_matrix = vectorizer.fit_transform(texts + [query])
    cosine_similarities = cosine_similarity(tfidf_matrix[-1], tfidf_matrix[:-1]).flatten()
    return cosine_similarities

def bert_similarity(texts, query, model_name='bert-base-uncased'):
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModel.from_pretrained(model_name)

    def get_embedding(text):
        inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True, max_length=512)
        with torch.no_grad():
            outputs = model(**inputs)
        return outputs.last_hidden_state.mean(dim=1).squeeze().numpy()

    query_embedding = get_embedding(query)
    text_embeddings = [get_embedding(text) for text in texts]

    similarities = [cosine_similarity([query_embedding], [text_embedding])[0][0] for text_embedding in text_embeddings]
    return similarities

# Fonction principale d'analyse modifiée
def analyze_link(title, link, topic, zero_shot_classifiers, embedding_models, expanded_query, llm_models, testcontent):
    print(f"\nAnalyse de : {title}")

    results = {
        "Titre": title,
        #"TF-IDF (titre)": improved_tfidf_similarity_v2([title], expanded_query)[0],
        #"BERT (titre)": bert_similarity([title], expanded_query)[0],
    }

    # Zero-shot analysis
    for name, classifier in zero_shot_classifiers.items():
        results[f"Zero-shot (titre) - {name}"] = zero_shot_analysis(title, topic, classifier)

    # Embedding analysis
    for name, model in embedding_models.items():
        topic_embedding = model.encode([expanded_query], convert_to_tensor=True)
        results[f"Embeddings (titre) - {name}"] = embedding_analysis(title, topic_embedding, model)

    # LLM analysis
    for model in llm_models:
        results[f"LLM Score - {model}"] = score_with_llm(title, topic, model)

    if testcontent:
        content = get_article_content(link)
        #results["TF-IDF (contenu)"] = improved_tfidf_similarity_v2([content], expanded_query)[0]
        #results["BERT (contenu)"]= bert_similarity([content], expanded_query)[0]

        # Zero-shot analysis
        for name, classifier in zero_shot_classifiers.items():
            results[f"Zero-shot (contenu) - {name}"] = zero_shot_analysis(content, topic, classifier)

        # Embedding analysis
        for name, model in embedding_models.items():
            topic_embedding = model.encode([expanded_query], convert_to_tensor=True)
            results[f"Embeddings (contenu) - {name}"] = embedding_analysis(content, topic_embedding, model)

        # LLM analysis
        for model in llm_models:
            results[f"LLM Content Score - {model}"] = score_with_llm(content, topic, model)


    return results

from scipy import stats

def evaluate_ranking(reference_data_valid, reference_data_rejected, method_scores, threshold, silent):
    simple_score = 0
    true_positives = 0
    false_positives = 0
    true_negatives = 0
    false_negatives = 0

    # Créer une liste de tous les éléments avec leur statut (1 pour valide, 0 pour rejeté)
    all_items = [(item, 1) for item in reference_data_valid] + [(item, 0) for item in reference_data_rejected]

    # Trier les éléments selon leur score dans la méthode
    all_items_temp = all_items.copy()
    # correct false positive if method spit out same score for all
    #random.shuffle(all_items_temp)
    all_items_temp.reverse()
    sorted_method = sorted([(item, method_scores.get(item, 0)) for item, _ in all_items_temp],
                           key=lambda x: x[1], reverse=True)

    # Créer des listes pour le calcul de la corrélation de Spearman
    reference_ranks = []
    method_ranks = []

    for i, (item, status) in enumerate(all_items):
        method_score = method_scores.get(item, 0)
        method_rank = next(j for j, (it, score) in enumerate(sorted_method) if it == item)

        reference_ranks.append(i)
        method_ranks.append(method_rank)

        if status == 1:  # Item valide
            if method_score >= threshold:
                simple_score += 1
                true_positives += 1
            else:
                simple_score -= 1
                false_negatives += 1
        else:  # Item rejeté
            if method_score < threshold:
                simple_score += 1
                true_negatives += 1
            else:
                simple_score -= 1
                false_positives += 1

    # Calculer le coefficient de corrélation de Spearman
    if not silent:
        print("+++")
        print(reference_ranks)
        print("---")
        print(method_ranks)
    spearman_corr, _ = stats.spearmanr(reference_ranks, method_ranks)

    # Calculer la précision, le rappel et le F1-score
    precision = true_positives / (true_positives + false_positives) if (true_positives + false_positives) > 0 else 0
    recall = true_positives / (true_positives + false_negatives) if (true_positives + false_negatives) > 0 else 0
    f1_score = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0

    return {
        "simple_score": simple_score,
        "spearman_correlation": spearman_corr,
        "precision": precision,
        "recall": recall,
        "f1_score": f1_score,
    }

def find_optimal_threshold(reference_data_valid, reference_data_rejected, method_scores):
    best_score = float('-inf')
    best_threshold = 0

    for threshold in np.arange(0, 1.05, 0.05):
        result = evaluate_ranking(
            reference_data_valid,
            reference_data_rejected,
            method_scores,
            threshold, True
        )
        if result['simple_score'] > best_score:
            best_score = result['simple_score']
            best_threshold = threshold

    return best_threshold

def reset_cuda_context():
    torch.cuda.empty_cache()
    torch.cuda.ipc_collect()
    if torch.cuda.is_available():
        torch.cuda.set_device(torch.cuda.current_device())
        torch.cuda.synchronize()

import gc
def clear_models():
    global zero_shot_classifiers, embedding_models_dict, bert_models, tfidf_objects

    for classifier in zero_shot_classifiers.values():
        del classifier
    zero_shot_classifiers.clear()

    for model in embedding_models_dict.values():
        del model
    embedding_models_dict.clear()

    for model in bert_models:
        del model
    bert_models.clear()

    for vectorizer in tfidf_objects:
        del vectorizer
    tfidf_objects.clear()

    torch.cuda.empty_cache()
    gc.collect()

def clear_globals():
    for name in list(globals()):
        if isinstance(globals()[name], (torch.nn.Module, torch.Tensor)):
            del globals()[name]

def release_vram(zero_shot_classifiers, embedding_models, bert_models, tfidf_objects):
    # Supprimer les objets zero-shot classifiers
    for model in zero_shot_classifiers.values():
        del model

    # Supprimer les objets embedding models
    for model in embedding_models.values():
        del model

    # Supprimer les objets bert models
    for model in bert_models:
        del model

    # Supprimer les objets tfidf objects
    for obj in tfidf_objects:
        del obj

    # Vider le cache de la mémoire GPU
    torch.cuda.empty_cache()
    torch.cuda.synchronize()
    gc.collect()
    clear_globals()
    reset_cuda_context()

def load_finetuned_model(model_path):
    checkpoint = torch.load(model_path)
    base_model = AutoModel.from_pretrained(checkpoint['base_model_name'])
    model = EmbeddingModel(base_model)
    model.load_state_dict(checkpoint['model_state_dict'])
    return model