File size: 14,963 Bytes
f34a6fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import streamlit as st
import requests
from bs4 import BeautifulSoup
import pandas as pd
import torch
from transformers import pipeline
from sentence_transformers import SentenceTransformer, util
import concurrent.futures
import time
import sys
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from transformers import AutoTokenizer, AutoModel
import numpy as np
from scipy import stats
from PyDictionary import PyDictionary
import matplotlib.pyplot as plt
from scipy import stats
import litellm
import re
import sentencepiece
import random
from global_vars import t, translations
from app import Plugin

from embeddings_ft import finetune as finetune_embeddings
from bart_ft import finetune as finetune_bart

from webrankings_helper import *
from plugins.scansite import ScansitePlugin

#from data import reference_data_valid, reference_data_rejected
#reference_data = reference_data_valid + reference_data_rejected

# Ajout des traductions spécifiques à ce plugin
translations["en"].update({
    "webrankings_title": "Comparative os sorter",
    "clear_memory": "Clear Memory",
    "enter_topic": "Enter the topic you're interested in (e.g. longevity):",
    "use_keyword_expansion": "Use keyword expansion",
    "test_content": "Also test link content in addition to titles",
    "select_llm_models": "Select LLM models to use",
    "select_zero_shot_models": "Select zero-shot models to use",
    "select_embedding_models": "Select embedding models to use",
    "analyze_button": "Analyze",
    "loading_models": "Loading models and analyzing links...",
    "expanded_keywords": "Expanded keywords:",
    "analysis_completed": "Analysis completed in {:.2f} seconds",
    "evaluation_results": "Evaluation results with optimal thresholds:",
    "summary_table": "Summary table of scores",
    "optimal_thresholds": "Optimal thresholds:",
    "spearman_comparison": "Comparison of Spearman correlations",
    "methods": "Methods",
    "spearman_correlation": "Spearman correlation coefficient",
    "results_for": "Results for {}",
    "device_info": "Device used for inference: {}",
    "finetune_bart_title": "BART Fine-tuning Interface",
    "finetune_embeddings_title": "Embeddings Fine-tuning Interface",
})

translations["fr"].update({
    "webrankings_title": "Analyseur de classeurs",
    "clear_memory": "Vider la mémoire",
    "enter_topic": "Entrez le sujet qui vous intéresse (ex: longévité):",
    "use_keyword_expansion": "Utiliser l'expansion des mots-clés",
    "test_content": "Tester aussi le contenu des liens en plus des titres",
    "select_llm_models": "Sélectionnez les modèles LLM à utiliser",
    "select_zero_shot_models": "Sélectionnez les modèles zero-shot à utiliser",
    "select_embedding_models": "Sélectionnez les modèles d'embedding à utiliser",
    "analyze_button": "Analyser",
    "loading_models": "Chargement des modèles et analyse des liens...",
    "expanded_keywords": "Mots-clés étendus :",
    "analysis_completed": "Analyse terminée en {:.2f} secondes",
    "evaluation_results": "Résultats d'évaluation avec les seuils optimaux :",
    "summary_table": "Tableau récapitulatif des scores",
    "optimal_thresholds": "Seuils optimaux :",
    "spearman_comparison": "Comparaison des corrélations de Spearman",
    "methods": "Méthodes",
    "spearman_correlation": "Coefficient de corrélation de Spearman",
    "results_for": "Résultats pour {}",
    "device_info": "Dispositif utilisé pour l'inférence : {}",
    "finetune_bart_title": "Interface de Fine-tuning BART",
    "finetune_embeddings_title": "Interface de Fine-tuning des Embeddings",
})


# Liste des modèles LLM
llm_models = [] #["ollama/llama3", "ollama/llama3.1", "ollama/qwen2", "ollama/phi3:medium-128k", "ollama/openhermes"]

# Liste des modèles zero-shot
zero_shot_models = [
    ("facebook/bart-large-mnli", "facebook/bart-large-mnli"),
    ("bart-large-ft", "./bart-large-ft")
    #("cross-encoder/nli-deberta-v3-base", "cross-encoder/nli-deberta-v3-base")
]

# Liste des modèles d'embedding
embedding_models = [
    ("paraphrase-MiniLM-L6-v2", "paraphrase-MiniLM-L6-v2"),
    ("all-MiniLM-L6-v2", "all-MiniLM-L6-v2"),
    ("nomic-embed-text-v1", "nomic-ai/nomic-embed-text-v1"),
    ("embeddings-ft", "./embeddings-ft")
]


class WebrankingsPlugin(Plugin):
    def __init__(self, name, plugin_manager):
        super().__init__(name, plugin_manager)
        self.scansite_plugin = ScansitePlugin('scansite', plugin_manager)

    def get_tabs(self):
        return [
            {"name": t("webrankings_title"), "plugin": "webrankings"}
        ]

    def run(self, config):
        tab1, tab2, tab3 = st.tabs([t("webrankings_title"), t("finetune_bart_title"), t("finetune_embeddings_title")])
        reference_data_valid, reference_data_rejected = self.scansite_plugin.get_reference_data()
        reference_data = reference_data_valid + [(url, title, 0) for url, title in reference_data_rejected]

        with tab1:
            st.title(t("webrankings_title"))
            if st.button(t("clear_memory")):
                torch.cuda.empty_cache()
                torch.cuda.synchronize()
                clear_globals()
                reset_cuda_context()

            topic = st.text_input(t("enter_topic"), value="longevity, health, healthspan, lifespan")
            use_synonyms = st.checkbox(t("use_keyword_expansion"), value=False)
            check_content = st.checkbox(t("test_content"), value=False)

            selected_llm_models = st.multiselect(t("select_llm_models"), llm_models, default=llm_models)
            selected_zero_shot_models = st.multiselect(t("select_zero_shot_models"), [m[0] for m in zero_shot_models], default=[m[0] for m in zero_shot_models])
            selected_embedding_models = st.multiselect(t("select_embedding_models"), [m[0] for m in embedding_models], default=[m[0] for m in embedding_models])

            if st.button(t("analyze_button")):
                with st.spinner(t("loading_models")):
                    device = "cuda" if torch.cuda.is_available() else "cpu"

                    # Préparation des modèles
                    zero_shot_classifiers = {name: pipeline("zero-shot-classification", model=model, device=device)
                                             for name, model in zero_shot_models if name in selected_zero_shot_models}
                    embedding_models_dict = {}
                    for name, model in embedding_models:
                        import os
                        if name == "embeddings-ft":
                            if os.path.exists('./embeddings-ft'):
                                embedding_models_dict[name] = SentenceTransformer('./embeddings-ft', trust_remote_code=True).to(device)
                        else:
                            embedding_models_dict[name] = SentenceTransformer(model, trust_remote_code=True).to(device)
                    bert_models = [AutoModel.from_pretrained('bert-base-uncased').to(device)]
                    tfidf_objects = [TfidfVectorizer()]
                    #release_vram(zero_shot_classifiers, embedding_models_dict, bert_models, tfidf_objects)

                    # Expansion des mots-clés (utilisant le premier modèle LLM sélectionné)
                    if use_synonyms and selected_llm_models:
                        expanded_query = []
                        for word in topic.split():
                            expanded_query.extend(expand_keywords_llm(word, llm_model=selected_llm_models[0]))
                        expanded_query = " ".join(expanded_query)
                        st.write("Mots-clés étendus :", expanded_query)
                    else:
                        expanded_query = topic

                    start_time = time.time()
                    # Analyse pour chaque lien
                    results = []
                    for title, link,note in reference_data:
                        result = analyze_link(
                            title, link, topic, zero_shot_classifiers, embedding_models_dict,
                            expanded_query, selected_llm_models, check_content
                        )
                        if result is not None:
                            results.append(result)
                    end_time = time.time()

                    # Libération de la mémoire VRAM et des autres ressources
                    release_vram(zero_shot_classifiers, embedding_models_dict, bert_models, tfidf_objects)

                    # Création du DataFrame avec tous les résultats
                    df = pd.DataFrame(results)
                    print(f"Analyse terminée en {end_time - start_time:.2f} secondes")

                    st.success(t("analysis_completed").format(end_time - start_time))

                    # Évaluation et affichage des résultats
                    evaluation_results = {}
                    optimal_thresholds = {}
                    for column in df.columns:
                        if column != "Titre":
                            method_scores = df.set_index("Titre")[column].to_dict()

                            optimal_threshold = find_optimal_threshold(
                                [item[0] for item in reference_data_valid],
                                [item[0] for item in reference_data_rejected],
                                method_scores
                            )
                            optimal_thresholds[column] = optimal_threshold

                            evaluation_results[column] = evaluate_ranking(
                                [item[0] for item in reference_data_valid],
                                [item[0] for item in reference_data_rejected],
                                method_scores,
                                optimal_threshold, False
                            )

                    # Affichage des résultats
                    st.write(t("evaluation_results"))
                    eval_df = pd.DataFrame(evaluation_results).T
                    st.dataframe(eval_df)

                    st.subheader(t("summary_table"))
                    st.dataframe(df)

                    st.write(t("optimal_thresholds"))
                    st.json(optimal_thresholds)

                    # Graphique de comparaison des corrélations de Spearman
                    spearman_scores = [results['spearman_correlation'] for results in evaluation_results.values()]
                    plt.figure(figsize=(15, 8))
                    plt.bar(evaluation_results.keys(), spearman_scores)
                    plt.title(t("spearman_comparison"))
                    plt.xlabel(t("methods"))
                    plt.ylabel(t("spearman_correlation"))
                    plt.xticks(rotation=90, ha='right')
                    plt.tight_layout()
                    st.pyplot(plt)

                    # Affichage des résultats pour chaque méthode
                    for column in df.columns:
                        if column != "Titre":
                            st.subheader(f"Résultats pour {column}")
                            df_method = df[["Titre", column]].sort_values(column, ascending=False)
                            threshold = find_optimal_threshold(
                                [item[0] for item in reference_data_valid],
                                [item[0] for item in reference_data_rejected],
                                df_method.set_index("Titre")[column].to_dict()
                            )
                            df_method = df_method[df_method[column] > threshold]
                            st.dataframe(df_method)

        with tab2:
            st.title(t("finetune_bart_title"))
            num_epochs = st.number_input("Nombre d'époques", min_value=1, max_value=10, value=2)
            lr = st.number_input("Learning Rate", min_value=1e-6, max_value=1e-1, value=2e-5, format="%.6f", step=1e-5)
            weight_decay = st.number_input("Poids de Décroissance (Weight Decay)", min_value=0.0, max_value=0.1, value=0.01, step=0.005)
            batch_size = st.number_input("Taille du Batch", min_value=1, max_value=16, value=1)
            start = st.slider("Score initial des données valides", min_value=0.0, max_value=1.0, value=0.9, step=0.01)
            model_name = st.text_input("Nom du modèle", value='facebook/bart-large-mnli')
            num_warmup_steps = st.number_input("Nombre d'étapes de Warmup", min_value=0, max_value=100, value=0)

            # Bouton pour lancer le fine-tuning
            if st.button("Lancer le fine-tuning"):
                with st.spinner("Fine-tuning en cours..."):
                    finetune_bart(num_epochs=num_epochs, lr=lr, weight_decay=weight_decay,
                             batch_size=batch_size, model_name=model_name, output_model='./bart-large-ft',
                             num_warmup_steps=num_warmup_steps)
                    st.success("Fine-tuning terminé et modèle sauvegardé.")

        with tab3:
            st.title(t("finetune_embeddings_title"))
            num_epochs_emb = st.number_input("Nombre d'époques (Embeddings)", min_value=1, max_value=100, value=10)
            lr_emb = st.number_input("Learning Rate (Embeddings)", min_value=1e-6, max_value=1e-1, value=2e-5, format="%.6f", step=5e-6)
            weight_decay_emb = st.number_input("Poids de Décroissance (Weight Decay) (Embeddings)", min_value=0.0, max_value=0.1, value=0.01, step=0.005)
            batch_size_emb = st.number_input("Taille du Batch (Embeddings)", min_value=1, max_value=32, value=16)
            start_emb = st.slider("Score initial des données valides (Embeddings)", min_value=0.0, max_value=1.0, value=0.9, step=0.01)
            model_name_emb = st.selectbox("Modèle d'embeddings de base", ["nomic-ai/nomic-embed-text-v1", "all-MiniLM-L6-v2", "paraphrase-MiniLM-L6-v2"])
            margin_erb = st.slider("Marge (Embeddings)", min_value=0.0, max_value=1.0, value=0.5, step=0.01)

            # Bouton pour lancer le fine-tuning des embeddings
            if st.button("Lancer le fine-tuning des embeddings"):
                with st.spinner("Fine-tuning des embeddings en cours..."):

                    finetune_embeddings(model_name=model_name_emb, output_model_name="./embeddings-ft",
                                        num_epochs=num_epochs_emb,
                                        learning_rate=lr_emb,
                                        weight_decay=weight_decay_emb,
                                        batch_size=batch_size_emb,
                                        )
                    st.success("Fine-tuning des embeddings terminé et modèle sauvegardé.")

        # Affichage de l'information sur le dispositif utilisé
        device = "GPU (CUDA)" if torch.cuda.is_available() else "CPU"
        st.sidebar.info(t("device_info").format(device))