import requests from bs4 import BeautifulSoup import pandas as pd import torch from transformers import pipeline from sentence_transformers import SentenceTransformer, util import concurrent.futures import time import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity from transformers import AutoTokenizer, AutoModel import numpy as np from scipy import stats from PyDictionary import PyDictionary import matplotlib.pyplot as plt from scipy import stats import litellm import re import sentencepiece import random def score_with_llm(title, topic, llm_model): prompt = f"""Evaluate the relevance of the following article to the topic '{topic}'. Article title: {title} Give a final relevance score between 0 and 1, where 1 is very relevant and 0 is not relevant at all. Respond only with a number between 0 and 1.""" try: response = litellm.completion( model=llm_model, messages=[{"role": "user", "content": prompt}], max_tokens=10 ) score_match = re.search(r'\d+(\.\d+)?', response.choices[0].message.content.strip()) if score_match: score = float(score_match.group()) print(f"Score LLM : {score}") return max(0, min(score, 1)) else: print(f"Could not extract a score from LLM response: {response.choices[0].message.content}") return None except Exception as e: print(f"Error in scoring with LLM {llm_model}: {str(e)}") return None def expand_keywords_llm(keyword, max_synonyms=3, llm_model="ollama/qwen2"): prompt = f"""Please provide up to {max_synonyms} synonyms or closely related terms for the word or phrase: "{keyword}". Return only the list of synonyms, separated by commas, without any additional explanation.""" try: response = litellm.completion( model=llm_model, messages=[{"role": "user", "content": prompt}], max_tokens=50 ) synonyms = [s.strip() for s in response.choices[0].message.content.split(',')] return [keyword] + synonyms[:max_synonyms] except Exception as e: print(f"Error in expanding keywords with LLM {llm_model}: {str(e)}") return [keyword] # Fonction pour obtenir les liens de la page d'accueil def get_homepage_links(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') links = soup.find_all('a', href=True) return [(link.text.strip(), link['href']) for link in links if link.text.strip()] # Fonction pour obtenir le contenu d'un article def get_article_content(url): try: print(f"Récupération du contenu de : {url}") response = requests.get(url) print(f"Taille de la réponse HTTP : {len(response.content)} octets") # Affiche le nombre d'octets de la réponse HTTP soup = BeautifulSoup(response.text, 'html.parser') print(f"Taille de l'objet soup : {sys.getsizeof(soup)} octets") # Affiche la taille en mémoire de l'objet soup article = soup.find('article') if article: paragraphs = article.find_all('p') content = ' '.join([p.text for p in paragraphs]) print(f"Paragraphes récupéré : {len(content)} caractères") return content print("Aucun contenu d'article trouvé") return "" except Exception as e: print(f"Erreur lors de la récupération du contenu : {str(e)}") return "" # Fonction pour l'analyse zero-shot def zero_shot_analysis(text, topic, classifier): if not text: print("Texte vide pour l'analyse zero-shot") return 0.0 result = classifier(text, candidate_labels=[topic, f"not {topic}"], multi_label=False) print(f"Score zero-shot : {result['scores'][0]}") return result['scores'][0] # Fonction pour l'analyse par embeddings def embedding_analysis(text, topic_embedding, model): if not text: print("Texte vide pour l'analyse par embeddings") return 0.0 text_embedding = model.encode([text], convert_to_tensor=True) similarity = util.pytorch_cos_sim(text_embedding, topic_embedding).item() print(f"Score embedding : {similarity}") return similarity from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity #import nltk #from nltk.corpus import wordnet #nltk.download('wordnet') def preprocess_text(text): # Tokenize the text tokens = text.lower().split() # Expand each token with its synonyms expanded_tokens = [] for token in tokens: synonyms = set() for syn in wordnet.synsets(token): for lemma in syn.lemmas(): synonyms.add(lemma.name()) expanded_tokens.extend(list(synonyms)) return ' '.join(expanded_tokens) def improved_tfidf_similarity(texts, query): # Preprocess texts and query preprocessed_texts = [preprocess_text(text) for text in texts] preprocessed_query = preprocess_text(query) # Combine texts and query for vectorization all_texts = preprocessed_texts + [preprocessed_query] # Use TfidfVectorizer with custom parameters vectorizer = TfidfVectorizer(ngram_range=(1, 2), min_df=1, smooth_idf=True) tfidf_matrix = vectorizer.fit_transform(all_texts) # Calculate cosine similarity cosine_similarities = cosine_similarity(tfidf_matrix[-1], tfidf_matrix[:-1]).flatten() # Normalize similarities to avoid zero scores normalized_similarities = (cosine_similarities - cosine_similarities.min()) / (cosine_similarities.max() - cosine_similarities.min()) return normalized_similarities from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity import numpy as np def improved_tfidf_similarity_v2(texts, query): # Combine texts and query, treating each word or phrase as a separate document all_docs = [word.strip() for text in texts for word in text.split(',')] + [word.strip() for word in query.split(',')] # Create TF-IDF matrix vectorizer = TfidfVectorizer() tfidf_matrix = vectorizer.fit_transform(all_docs) # Calculate document vectors by summing the TF-IDF vectors of their words doc_vectors = [] query_vector = np.zeros((1, tfidf_matrix.shape[1])) current_doc = 0 for i, doc in enumerate(all_docs): if i < len(all_docs) - len(query.split(',')): # If it's part of the texts if current_doc == len(texts): break if doc in texts[current_doc]: doc_vectors.append(tfidf_matrix[i].toarray()) else: current_doc += 1 doc_vectors.append(tfidf_matrix[i].toarray()) else: # If it's part of the query query_vector += tfidf_matrix[i].toarray() doc_vectors = np.array([np.sum(doc, axis=0) for doc in doc_vectors]) # Calculate cosine similarity similarities = cosine_similarity(query_vector, doc_vectors).flatten() # Normalize similarities to avoid zero scores normalized_similarities = (similarities - similarities.min()) / (similarities.max() - similarities.min() + 1e-8) return normalized_similarities # Example usage: # texts = ["longevity, health, aging", "computer science, AI"] # query = "longevity, life extension, anti-aging" # results = improved_tfidf_similarity_v2(texts, query) # print(results) # Nouvelles fonctions def tfidf_similarity(texts, query): vectorizer = TfidfVectorizer() tfidf_matrix = vectorizer.fit_transform(texts + [query]) cosine_similarities = cosine_similarity(tfidf_matrix[-1], tfidf_matrix[:-1]).flatten() return cosine_similarities def bert_similarity(texts, query, model_name='bert-base-uncased'): tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) def get_embedding(text): inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True, max_length=512) with torch.no_grad(): outputs = model(**inputs) return outputs.last_hidden_state.mean(dim=1).squeeze().numpy() query_embedding = get_embedding(query) text_embeddings = [get_embedding(text) for text in texts] similarities = [cosine_similarity([query_embedding], [text_embedding])[0][0] for text_embedding in text_embeddings] return similarities # Fonction principale d'analyse modifiée def analyze_link(title, link, topic, zero_shot_classifiers, embedding_models, expanded_query, llm_models, testcontent): print(f"\nAnalyse de : {title}") results = { "Titre": title, #"TF-IDF (titre)": improved_tfidf_similarity_v2([title], expanded_query)[0], #"BERT (titre)": bert_similarity([title], expanded_query)[0], } # Zero-shot analysis for name, classifier in zero_shot_classifiers.items(): results[f"Zero-shot (titre) - {name}"] = zero_shot_analysis(title, topic, classifier) # Embedding analysis for name, model in embedding_models.items(): topic_embedding = model.encode([expanded_query], convert_to_tensor=True) results[f"Embeddings (titre) - {name}"] = embedding_analysis(title, topic_embedding, model) # LLM analysis for model in llm_models: results[f"LLM Score - {model}"] = score_with_llm(title, topic, model) if testcontent: content = get_article_content(link) #results["TF-IDF (contenu)"] = improved_tfidf_similarity_v2([content], expanded_query)[0] #results["BERT (contenu)"]= bert_similarity([content], expanded_query)[0] # Zero-shot analysis for name, classifier in zero_shot_classifiers.items(): results[f"Zero-shot (contenu) - {name}"] = zero_shot_analysis(content, topic, classifier) # Embedding analysis for name, model in embedding_models.items(): topic_embedding = model.encode([expanded_query], convert_to_tensor=True) results[f"Embeddings (contenu) - {name}"] = embedding_analysis(content, topic_embedding, model) # LLM analysis for model in llm_models: results[f"LLM Content Score - {model}"] = score_with_llm(content, topic, model) return results from scipy import stats def evaluate_ranking(reference_data_valid, reference_data_rejected, method_scores, threshold, silent): simple_score = 0 true_positives = 0 false_positives = 0 true_negatives = 0 false_negatives = 0 # Créer une liste de tous les éléments avec leur statut (1 pour valide, 0 pour rejeté) all_items = [(item, 1) for item in reference_data_valid] + [(item, 0) for item in reference_data_rejected] # Trier les éléments selon leur score dans la méthode all_items_temp = all_items.copy() # correct false positive if method spit out same score for all #random.shuffle(all_items_temp) all_items_temp.reverse() sorted_method = sorted([(item, method_scores.get(item, 0)) for item, _ in all_items_temp], key=lambda x: x[1], reverse=True) # Créer des listes pour le calcul de la corrélation de Spearman reference_ranks = [] method_ranks = [] for i, (item, status) in enumerate(all_items): method_score = method_scores.get(item, 0) method_rank = next(j for j, (it, score) in enumerate(sorted_method) if it == item) reference_ranks.append(i) method_ranks.append(method_rank) if status == 1: # Item valide if method_score >= threshold: simple_score += 1 true_positives += 1 else: simple_score -= 1 false_negatives += 1 else: # Item rejeté if method_score < threshold: simple_score += 1 true_negatives += 1 else: simple_score -= 1 false_positives += 1 # Calculer le coefficient de corrélation de Spearman if not silent: print("+++") print(reference_ranks) print("---") print(method_ranks) spearman_corr, _ = stats.spearmanr(reference_ranks, method_ranks) # Calculer la précision, le rappel et le F1-score precision = true_positives / (true_positives + false_positives) if (true_positives + false_positives) > 0 else 0 recall = true_positives / (true_positives + false_negatives) if (true_positives + false_negatives) > 0 else 0 f1_score = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0 return { "simple_score": simple_score, "spearman_correlation": spearman_corr, "precision": precision, "recall": recall, "f1_score": f1_score, } def find_optimal_threshold(reference_data_valid, reference_data_rejected, method_scores): best_score = float('-inf') best_threshold = 0 for threshold in np.arange(0, 1.05, 0.05): result = evaluate_ranking( reference_data_valid, reference_data_rejected, method_scores, threshold, True ) if result['simple_score'] > best_score: best_score = result['simple_score'] best_threshold = threshold return best_threshold def reset_cuda_context(): torch.cuda.empty_cache() torch.cuda.ipc_collect() if torch.cuda.is_available(): torch.cuda.set_device(torch.cuda.current_device()) torch.cuda.synchronize() import gc def clear_models(): global zero_shot_classifiers, embedding_models_dict, bert_models, tfidf_objects for classifier in zero_shot_classifiers.values(): del classifier zero_shot_classifiers.clear() for model in embedding_models_dict.values(): del model embedding_models_dict.clear() for model in bert_models: del model bert_models.clear() for vectorizer in tfidf_objects: del vectorizer tfidf_objects.clear() torch.cuda.empty_cache() gc.collect() def clear_globals(): for name in list(globals()): if isinstance(globals()[name], (torch.nn.Module, torch.Tensor)): del globals()[name] def release_vram(zero_shot_classifiers, embedding_models, bert_models, tfidf_objects): # Supprimer les objets zero-shot classifiers for model in zero_shot_classifiers.values(): del model # Supprimer les objets embedding models for model in embedding_models.values(): del model # Supprimer les objets bert models for model in bert_models: del model # Supprimer les objets tfidf objects for obj in tfidf_objects: del obj # Vider le cache de la mémoire GPU torch.cuda.empty_cache() torch.cuda.synchronize() gc.collect() clear_globals() reset_cuda_context() def load_finetuned_model(model_path): checkpoint = torch.load(model_path) base_model = AutoModel.from_pretrained(checkpoint['base_model_name']) model = EmbeddingModel(base_model) model.load_state_dict(checkpoint['model_state_dict']) return model