import gradio as gr from huggingface_hub import InferenceClient from transformers import AutoTokenizer, AutoModel from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import HuggingFaceEmbeddings from langchain_community.embeddings import HuggingFaceEmbeddings import fitz # PyMuPDF import os import hashlib # Directory to store cached files CACHE_DIR = "pdf_cache" os.makedirs(CACHE_DIR, exist_ok=True) def get_hf_models(): return ["Qwen/Qwen2.5-3B-Instruct", "HuggingFaceH4/zephyr-7b-beta", "mistralai/Mistral-7B-Instruct-v0.1"] def extract_text_from_pdf(pdf_path): text = "" with fitz.open(pdf_path) as doc: for page in doc: text += page.get_text() return text def manual_rag(query, context, client): prompt = f"Context: {context}\n\nQuestion: {query}\n\nAnswer:" response = client.text_generation(prompt, max_new_tokens=512) return response def classic_rag(query, pdf_path, client, embedder): text = extract_text_from_pdf(pdf_path) text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) chunks = text_splitter.split_text(text) embeddings = HuggingFaceEmbeddings(model_name=embedder) db = FAISS.from_texts(chunks, embeddings) docs = db.similarity_search(query, k=3) context = " ".join([doc.page_content for doc in docs]) response = manual_rag(query, context, client) return response, context def no_rag(query, client): response = client.text_generation(query, max_new_tokens=512) return response def cache_file(file): if file is None: return None file_hash = hashlib.md5(file.read()).hexdigest() cached_path = os.path.join(CACHE_DIR, f"{file_hash}.pdf") if not os.path.exists(cached_path): with open(cached_path, "wb") as f: file.seek(0) f.write(file.read()) return cached_path def get_cached_files(): return [f for f in os.listdir(CACHE_DIR) if f.endswith('.pdf')] def process_query(query, pdf_file, cached_file, llm_choice, embedder_choice): client = InferenceClient(llm_choice) no_rag_response = no_rag(query, client) if pdf_file is not None: pdf_path = cache_file(pdf_file) elif cached_file: pdf_path = os.path.join(CACHE_DIR, cached_file) else: return no_rag_response, "RAG non utilisé (pas de fichier PDF)", "RAG non utilisé (pas de fichier PDF)", "Pas de fichier PDF fourni", "Pas de contexte extrait" full_text = extract_text_from_pdf(pdf_path) manual_rag_response = manual_rag(query, full_text, client) classic_rag_response, classic_rag_context = classic_rag(query, pdf_path, client, embedder_choice) return no_rag_response, manual_rag_response, classic_rag_response, full_text, classic_rag_context iface = gr.Interface( fn=process_query, inputs=[ gr.Textbox(label="Votre question"), gr.File(label="Chargez un nouveau PDF"), gr.Dropdown(choices=get_cached_files, label="Ou choisissez un PDF déjà téléversé", interactive=True), gr.Dropdown(choices=get_hf_models(), label="Choisissez le LLM", value="Qwen/Qwen2.5-3B-Instruct"), gr.Dropdown(choices=["sentence-transformers/all-MiniLM-L6-v2", "nomic-ai/nomic-embed-text-v1.5"], label="Choisissez l'Embedder", value="sentence-transformers/all-MiniLM-L6-v2") ], outputs=[ gr.Textbox(label="Réponse sans RAG"), gr.Textbox(label="Réponse avec RAG manuel"), gr.Textbox(label="Réponse avec RAG classique"), gr.Textbox(label="Texte complet du PDF (pour RAG manuel)", lines=10), gr.Textbox(label="Contexte extrait (pour RAG classique)", lines=10) ], title="Tutoriel RAG - Comparaison des méthodes", description="Posez une question sur le contenu d'un PDF et comparez les réponses obtenues avec différentes méthodes de RAG.", theme="default" ) if __name__ == "__main__": iface.launch()