joheras's picture
Create app.py
efdbebb
raw
history blame contribute delete
971 Bytes
from transformers import pipeline
from transformers import WhisperForConditionalGeneration, WhisperProcessor
from transformers import WhisperTokenizer
from transformers import WhisperFeatureExtractor
import gradio as gr
tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-small", language="Spanish", task="transcribe")
model = WhisperForConditionalGeneration.from_pretrained("mirari/whisper-small-es")
feature_extractor = WhisperFeatureExtractor.from_pretrained("openai/whisper-small")
pipe = pipeline(task="automatic-speech-recognition",model=model, tokenizer=tokenizer,feature_extractor=feature_extractor)
def transcribe(audio):
text = pipe(audio)["text"]
return text
iface = gr.Interface(
fn=transcribe,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs="text",
title="Whisper Small Hindi",
description="Realtime demo for Spanish speech recognition using a fine-tuned Whisper small model.",
)
iface.launch()