from transformers import pipeline from transformers import WhisperForConditionalGeneration, WhisperProcessor from transformers import WhisperTokenizer from transformers import WhisperFeatureExtractor import gradio as gr tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-small", language="Spanish", task="transcribe") model = WhisperForConditionalGeneration.from_pretrained("mirari/whisper-small-es") feature_extractor = WhisperFeatureExtractor.from_pretrained("openai/whisper-small") pipe = pipeline(task="automatic-speech-recognition",model=model, tokenizer=tokenizer,feature_extractor=feature_extractor) def transcribe(audio): text = pipe(audio)["text"] return text iface = gr.Interface( fn=transcribe, inputs=gr.Audio(source="microphone", type="filepath"), outputs="text", title="Whisper Small Hindi", description="Realtime demo for Spanish speech recognition using a fine-tuned Whisper small model.", ) iface.launch()