File size: 1,515 Bytes
68a18d6
 
10db971
 
54a28fe
10db971
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import gradio as gr

model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")

def generate(message):
    text = f"You are an assistant to help people with suicide toughts and their family and friends. Given a sentence you will classify it into three categories: suicide intent, if the sentence belongs that has a suicide intent or have suicidal toughts; information, if the sentence belongs to a person that is looking for information about suicide or is concern about some relative; or depression, if the sentence belongs to a person that is depressed or have negative toughts. Classify with just one word the sentence {message} and give an explanation in Spanish"

    messages = [
        {"role": "user", "content": text},
    ]

    encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

    model_inputs = encodeds.to(device)
    model.to(device)

    generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
    decoded = tokenizer.batch_decode(generated_ids)
    print(decoded[0][decoded[0].rfind(["[/INST]"])+6:])


example1 = "No quiero seguir viviendo ¿qué puedo hacer?."
example2 = "¿Cómo puedo ayudar a un amigo que quiere quitarse la vida?"

    

iface = gr.Interface(fn=information_or_intent,inputs="text", outputs="text",examples=[example1,example2]).launch(share=False)