Spaces:
Configuration error
Configuration error
File size: 20,308 Bytes
2a3a041 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# Code adapted from https://github.com/pytorch/fairseq
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# https://github.com/pytorch/fairseq. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.modules.utils import _single
import src.modules.utils as utils
from src.modules.multihead_attention import MultiheadAttention
import numpy as np
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
import copy
def make_positions(tensor, padding_idx, left_pad):
"""Replace non-padding symbols with their position numbers.
Position numbers begin at padding_idx+1.
Padding symbols are ignored, but it is necessary to specify whether padding
is added on the left side (left_pad=True) or right side (left_pad=False).
"""
# creates tensor from scratch - to avoid multigpu issues
max_pos = padding_idx + 1 + tensor.size(1)
#if not hasattr(make_positions, 'range_buf'):
range_buf = tensor.new()
#make_positions.range_buf = make_positions.range_buf.type_as(tensor)
if range_buf.numel() < max_pos:
torch.arange(padding_idx + 1, max_pos, out=range_buf)
mask = tensor.ne(padding_idx)
positions = range_buf[:tensor.size(1)].expand_as(tensor)
if left_pad:
positions = positions - mask.size(1) + mask.long().sum(dim=1).unsqueeze(1)
out = tensor.clone()
out = out.masked_scatter_(mask,positions[mask])
return out
class LearnedPositionalEmbedding(nn.Embedding):
"""This module learns positional embeddings up to a fixed maximum size.
Padding symbols are ignored, but it is necessary to specify whether padding
is added on the left side (left_pad=True) or right side (left_pad=False).
"""
def __init__(self, num_embeddings, embedding_dim, padding_idx, left_pad):
super().__init__(num_embeddings, embedding_dim, padding_idx)
self.left_pad = left_pad
nn.init.normal_(self.weight, mean=0, std=embedding_dim ** -0.5)
def forward(self, input, incremental_state=None):
"""Input is expected to be of size [bsz x seqlen]."""
if incremental_state is not None:
# positions is the same for every token when decoding a single step
positions = input.data.new(1, 1).fill_(self.padding_idx + input.size(1))
else:
positions = make_positions(input.data, self.padding_idx, self.left_pad)
return super().forward(positions)
def max_positions(self):
"""Maximum number of supported positions."""
return self.num_embeddings - self.padding_idx - 1
class SinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length.
Padding symbols are ignored, but it is necessary to specify whether padding
is added on the left side (left_pad=True) or right side (left_pad=False).
"""
def __init__(self, embedding_dim, padding_idx, left_pad, init_size=1024):
super().__init__()
self.embedding_dim = embedding_dim
self.padding_idx = padding_idx
self.left_pad = left_pad
self.weights = SinusoidalPositionalEmbedding.get_embedding(
init_size,
embedding_dim,
padding_idx,
)
self.register_buffer('_float_tensor', torch.FloatTensor())
@staticmethod
def get_embedding(num_embeddings, embedding_dim, padding_idx=None):
"""Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly
from the description in Section 3.5 of "Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if padding_idx is not None:
emb[padding_idx, :] = 0
return emb
def forward(self, input, incremental_state=None):
"""Input is expected to be of size [bsz x seqlen]."""
# recompute/expand embeddings if needed
bsz, seq_len = input.size()
max_pos = self.padding_idx + 1 + seq_len
if self.weights is None or max_pos > self.weights.size(0):
self.weights = SinusoidalPositionalEmbedding.get_embedding(
max_pos,
self.embedding_dim,
self.padding_idx,
)
self.weights = self.weights.type_as(self._float_tensor)
if incremental_state is not None:
# positions is the same for every token when decoding a single step
return self.weights[self.padding_idx + seq_len, :].expand(bsz, 1, -1)
positions = make_positions(input.data, self.padding_idx, self.left_pad)
return self.weights.index_select(0, positions.view(-1)).view(bsz, seq_len, -1).detach()
def max_positions(self):
"""Maximum number of supported positions."""
return int(1e5) # an arbitrary large number
class TransformerDecoderLayer(nn.Module):
"""Decoder layer block."""
def __init__(self, embed_dim, n_att, dropout=0.5, normalize_before=True, last_ln=False):
super().__init__()
self.embed_dim = embed_dim
self.dropout = dropout
self.relu_dropout = dropout
self.normalize_before = normalize_before
num_layer_norm = 3
# self-attention on generated recipe
self.self_attn = MultiheadAttention(
self.embed_dim, n_att,
dropout=dropout,
)
self.cond_att = MultiheadAttention(
self.embed_dim, n_att,
dropout=dropout,
)
self.fc1 = Linear(self.embed_dim, self.embed_dim)
self.fc2 = Linear(self.embed_dim, self.embed_dim)
self.layer_norms = nn.ModuleList([LayerNorm(self.embed_dim) for i in range(num_layer_norm)])
self.use_last_ln = last_ln
if self.use_last_ln:
self.last_ln = LayerNorm(self.embed_dim)
def forward(self, x, ingr_features, ingr_mask, incremental_state, img_features):
# self attention
residual = x
x = self.maybe_layer_norm(0, x, before=True)
x, _ = self.self_attn(
query=x,
key=x,
value=x,
mask_future_timesteps=True,
incremental_state=incremental_state,
need_weights=False,
)
x = F.dropout(x, p=self.dropout, training=self.training)
x = residual + x
x = self.maybe_layer_norm(0, x, after=True)
residual = x
x = self.maybe_layer_norm(1, x, before=True)
# attention
if ingr_features is None:
x, _ = self.cond_att(query=x,
key=img_features,
value=img_features,
key_padding_mask=None,
incremental_state=incremental_state,
static_kv=True,
)
elif img_features is None:
x, _ = self.cond_att(query=x,
key=ingr_features,
value=ingr_features,
key_padding_mask=ingr_mask,
incremental_state=incremental_state,
static_kv=True,
)
else:
# attention on concatenation of encoder_out and encoder_aux, query self attn (x)
kv = torch.cat((img_features, ingr_features), 0)
mask = torch.cat((torch.zeros(img_features.shape[1], img_features.shape[0], dtype=torch.uint8).to(device),
ingr_mask), 1)
x, _ = self.cond_att(query=x,
key=kv,
value=kv,
key_padding_mask=mask,
incremental_state=incremental_state,
static_kv=True,
)
x = F.dropout(x, p=self.dropout, training=self.training)
x = residual + x
x = self.maybe_layer_norm(1, x, after=True)
residual = x
x = self.maybe_layer_norm(-1, x, before=True)
x = F.relu(self.fc1(x))
x = F.dropout(x, p=self.relu_dropout, training=self.training)
x = self.fc2(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = residual + x
x = self.maybe_layer_norm(-1, x, after=True)
if self.use_last_ln:
x = self.last_ln(x)
return x
def maybe_layer_norm(self, i, x, before=False, after=False):
assert before ^ after
if after ^ self.normalize_before:
return self.layer_norms[i](x)
else:
return x
class DecoderTransformer(nn.Module):
"""Transformer decoder."""
def __init__(self, embed_size, vocab_size, dropout=0.5, seq_length=20, num_instrs=15,
attention_nheads=16, pos_embeddings=True, num_layers=8, learned=True, normalize_before=True,
normalize_inputs=False, last_ln=False, scale_embed_grad=False):
super(DecoderTransformer, self).__init__()
self.dropout = dropout
self.seq_length = seq_length * num_instrs
self.embed_tokens = nn.Embedding(vocab_size, embed_size, padding_idx=vocab_size-1,
scale_grad_by_freq=scale_embed_grad)
nn.init.normal_(self.embed_tokens.weight, mean=0, std=embed_size ** -0.5)
if pos_embeddings:
self.embed_positions = PositionalEmbedding(1024, embed_size, 0, left_pad=False, learned=learned)
else:
self.embed_positions = None
self.normalize_inputs = normalize_inputs
if self.normalize_inputs:
self.layer_norms_in = nn.ModuleList([LayerNorm(embed_size) for i in range(3)])
self.embed_scale = math.sqrt(embed_size)
self.layers = nn.ModuleList([])
self.layers.extend([
TransformerDecoderLayer(embed_size, attention_nheads, dropout=dropout, normalize_before=normalize_before,
last_ln=last_ln)
for i in range(num_layers)
])
self.linear = Linear(embed_size, vocab_size-1)
def forward(self, ingr_features, ingr_mask, captions, img_features, incremental_state=None):
if ingr_features is not None:
ingr_features = ingr_features.permute(0, 2, 1)
ingr_features = ingr_features.transpose(0, 1)
if self.normalize_inputs:
self.layer_norms_in[0](ingr_features)
if img_features is not None:
img_features = img_features.permute(0, 2, 1)
img_features = img_features.transpose(0, 1)
if self.normalize_inputs:
self.layer_norms_in[1](img_features)
if ingr_mask is not None:
ingr_mask = (1-ingr_mask.squeeze(1)).byte()
# embed positions
if self.embed_positions is not None:
positions = self.embed_positions(captions, incremental_state=incremental_state)
if incremental_state is not None:
if self.embed_positions is not None:
positions = positions[:, -1:]
captions = captions[:, -1:]
# embed tokens and positions
x = self.embed_scale * self.embed_tokens(captions)
if self.embed_positions is not None:
x += positions
if self.normalize_inputs:
x = self.layer_norms_in[2](x)
x = F.dropout(x, p=self.dropout, training=self.training)
# B x T x C -> T x B x C
x = x.transpose(0, 1)
for p, layer in enumerate(self.layers):
x = layer(
x,
ingr_features,
ingr_mask,
incremental_state,
img_features
)
# T x B x C -> B x T x C
x = x.transpose(0, 1)
x = self.linear(x)
_, predicted = x.max(dim=-1)
return x, predicted
def sample(self, ingr_features, ingr_mask, greedy=True, temperature=1.0, beam=-1,
img_features=None, first_token_value=0,
replacement=True, last_token_value=0):
incremental_state = {}
# create dummy previous word
if ingr_features is not None:
fs = ingr_features.size(0)
else:
fs = img_features.size(0)
if beam != -1:
if fs == 1:
return self.sample_beam(ingr_features, ingr_mask, beam, img_features, first_token_value,
replacement, last_token_value)
else:
print ("Beam Search can only be used with batch size of 1. Running greedy or temperature sampling...")
first_word = torch.ones(fs)*first_token_value
first_word = first_word.to(device).long()
sampled_ids = [first_word]
logits = []
for i in range(self.seq_length):
# forward
outputs, _ = self.forward(ingr_features, ingr_mask, torch.stack(sampled_ids, 1),
img_features, incremental_state)
outputs = outputs.squeeze(1)
if not replacement:
# predicted mask
if i == 0:
predicted_mask = torch.zeros(outputs.shape).float().to(device)
else:
# ensure no repetitions in sampling if replacement==False
batch_ind = [j for j in range(fs) if sampled_ids[i][j] != 0]
sampled_ids_new = sampled_ids[i][batch_ind]
predicted_mask[batch_ind, sampled_ids_new] = float('-inf')
# mask previously selected ids
outputs += predicted_mask
logits.append(outputs)
if greedy:
outputs_prob = torch.nn.functional.softmax(outputs, dim=-1)
_, predicted = outputs_prob.max(1)
predicted = predicted.detach()
else:
k = 10
outputs_prob = torch.div(outputs.squeeze(1), temperature)
outputs_prob = torch.nn.functional.softmax(outputs_prob, dim=-1).data
# top k random sampling
prob_prev_topk, indices = torch.topk(outputs_prob, k=k, dim=1)
predicted = torch.multinomial(prob_prev_topk, 1).view(-1)
predicted = torch.index_select(indices, dim=1, index=predicted)[:, 0].detach()
sampled_ids.append(predicted)
sampled_ids = torch.stack(sampled_ids[1:], 1)
logits = torch.stack(logits, 1)
return sampled_ids, logits
def sample_beam(self, ingr_features, ingr_mask, beam=3, img_features=None, first_token_value=0,
replacement=True, last_token_value=0):
k = beam
alpha = 0.0
# create dummy previous word
if ingr_features is not None:
fs = ingr_features.size(0)
else:
fs = img_features.size(0)
first_word = torch.ones(fs)*first_token_value
first_word = first_word.to(device).long()
sequences = [[[first_word], 0, {}, False, 1]]
finished = []
for i in range(self.seq_length):
# forward
all_candidates = []
for rem in range(len(sequences)):
incremental = sequences[rem][2]
outputs, _ = self.forward(ingr_features, ingr_mask, torch.stack(sequences[rem][0], 1),
img_features, incremental)
outputs = outputs.squeeze(1)
if not replacement:
# predicted mask
if i == 0:
predicted_mask = torch.zeros(outputs.shape).float().to(device)
else:
# ensure no repetitions in sampling if replacement==False
batch_ind = [j for j in range(fs) if sequences[rem][0][i][j] != 0]
sampled_ids_new = sequences[rem][0][i][batch_ind]
predicted_mask[batch_ind, sampled_ids_new] = float('-inf')
# mask previously selected ids
outputs += predicted_mask
outputs_prob = torch.nn.functional.log_softmax(outputs, dim=-1)
probs, indices = torch.topk(outputs_prob, beam)
# tokens is [batch x beam ] and every element is a list
# score is [ batch x beam ] and every element is a scalar
# incremental is [batch x beam ] and every element is a dict
for bid in range(beam):
tokens = sequences[rem][0] + [indices[:, bid]]
score = sequences[rem][1] + probs[:, bid].squeeze().item()
if indices[:,bid].item() == last_token_value:
finished.append([tokens, score, None, True, sequences[rem][-1] + 1])
else:
all_candidates.append([tokens, score, incremental, False, sequences[rem][-1] + 1])
# if all the top-k scoring beams have finished, we can return them
ordered_all = sorted(all_candidates + finished, key=lambda tup: tup[1]/(np.power(tup[-1],alpha)),
reverse=True)[:k]
if all(el[-1] == True for el in ordered_all):
all_candidates = []
# order all candidates by score
ordered = sorted(all_candidates, key=lambda tup: tup[1]/(np.power(tup[-1],alpha)), reverse=True)
# select k best
sequences = ordered[:k]
finished = sorted(finished, key=lambda tup: tup[1]/(np.power(tup[-1],alpha)), reverse=True)[:k]
if len(finished) != 0:
sampled_ids = torch.stack(finished[0][0][1:], 1)
logits = finished[0][1]
else:
sampled_ids = torch.stack(sequences[0][0][1:], 1)
logits = sequences[0][1]
return sampled_ids, logits
def max_positions(self):
"""Maximum output length supported by the decoder."""
return self.embed_positions.max_positions()
def upgrade_state_dict(self, state_dict):
if isinstance(self.embed_positions, SinusoidalPositionalEmbedding):
if 'decoder.embed_positions.weights' in state_dict:
del state_dict['decoder.embed_positions.weights']
if 'decoder.embed_positions._float_tensor' not in state_dict:
state_dict['decoder.embed_positions._float_tensor'] = torch.FloatTensor()
return state_dict
def Embedding(num_embeddings, embedding_dim, padding_idx, ):
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5)
return m
def LayerNorm(embedding_dim):
m = nn.LayerNorm(embedding_dim)
return m
def Linear(in_features, out_features, bias=True):
m = nn.Linear(in_features, out_features, bias)
nn.init.xavier_uniform_(m.weight)
nn.init.constant_(m.bias, 0.)
return m
def PositionalEmbedding(num_embeddings, embedding_dim, padding_idx, left_pad, learned=False):
if learned:
m = LearnedPositionalEmbedding(num_embeddings, embedding_dim, padding_idx, left_pad)
nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5)
nn.init.constant_(m.weight[padding_idx], 0)
else:
m = SinusoidalPositionalEmbedding(embedding_dim, padding_idx, left_pad, num_embeddings)
return m
|