Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,10 @@
|
|
1 |
-
import
|
2 |
-
from typing import Iterator
|
3 |
-
|
4 |
import gradio as gr
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
HF_PUBLIC = os.environ.get("HF_PUBLIC", False)
|
9 |
|
10 |
-
|
|
|
11 |
You are a digital assistant for John "LJ" Strenio's Data science portfolio page. Here are some key details about John to keep in mind with your response.
|
12 |
[John's Resume]:
|
13 |
John Strenio
|
@@ -41,242 +38,52 @@ John’s from Vermont but spent most of his adult life in Salt Lake City Utah fo
|
|
41 |
John currently lives in Portland Oregon with his partner where he enjoys surfing the cold water’s of the oregon coast and playing with his two miniature dachshunds “maddie” and “nova”.
|
42 |
Remember you are a professional assistant and you would like to only discuss John and be helpful in answering questions about his professional life or reasonable questions about his as a person. Your goal should be to describe John in a flattering manner making him appear as a good Data Scientist and nice person.
|
43 |
'''
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
# John's Assistant
|
50 |
-
"""
|
51 |
-
|
52 |
-
def clear_and_save_textbox(message: str) -> tuple[str, str]:
|
53 |
-
return '', message
|
54 |
-
|
55 |
-
|
56 |
-
def display_input(message: str,
|
57 |
-
history: list[tuple[str, str]]) -> list[tuple[str, str]]:
|
58 |
-
history.append((message, ''))
|
59 |
-
return history
|
60 |
-
|
61 |
-
|
62 |
-
def delete_prev_fn(
|
63 |
-
history: list[tuple[str, str]]) -> tuple[list[tuple[str, str]], str]:
|
64 |
-
try:
|
65 |
-
message, _ = history.pop()
|
66 |
-
except IndexError:
|
67 |
-
message = ''
|
68 |
-
return history, message or ''
|
69 |
-
|
70 |
|
71 |
def generate(
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
top_p
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
first_response = next(generator)
|
87 |
-
yield history + [(message, first_response)]
|
88 |
-
except StopIteration:
|
89 |
-
yield history + [(message, '')]
|
90 |
-
for response in generator:
|
91 |
-
yield history + [(message, response)]
|
92 |
-
|
93 |
-
|
94 |
-
def process_example(message: str) -> tuple[str, list[tuple[str, str]]]:
|
95 |
-
generator = generate(message, [], DEFAULT_SYSTEM_PROMPT, 1024, 1, 0.95, 50)
|
96 |
-
for x in generator:
|
97 |
-
pass
|
98 |
-
return '', x
|
99 |
-
|
100 |
-
|
101 |
-
def check_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> None:
|
102 |
-
input_token_length = len(message) + len(chat_history)
|
103 |
-
if input_token_length > MAX_INPUT_TOKEN_LENGTH:
|
104 |
-
raise gr.Error(f'The accumulated input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH}). Clear your chat history and try again.')
|
105 |
-
|
106 |
-
|
107 |
-
with gr.Blocks(css='style.css') as demo:
|
108 |
-
gr.Markdown(DESCRIPTION)
|
109 |
-
# gr.DuplicateButton(value='Duplicate Space for private use',
|
110 |
-
# elem_id='duplicate-button')
|
111 |
-
|
112 |
-
with gr.Group():
|
113 |
-
chatbot = gr.Chatbot(label='Discussion')
|
114 |
-
with gr.Row():
|
115 |
-
textbox = gr.Textbox(
|
116 |
-
container=False,
|
117 |
-
show_label=False,
|
118 |
-
placeholder='Tell me about John.',
|
119 |
-
scale=10,
|
120 |
-
)
|
121 |
-
submit_button = gr.Button('Submit',
|
122 |
-
variant='primary',
|
123 |
-
scale=1,
|
124 |
-
min_width=0)
|
125 |
-
with gr.Row():
|
126 |
-
retry_button = gr.Button('🔄 Retry', variant='secondary')
|
127 |
-
undo_button = gr.Button('↩️ Undo', variant='secondary')
|
128 |
-
clear_button = gr.Button('🗑️ Clear', variant='secondary')
|
129 |
-
|
130 |
-
saved_input = gr.State()
|
131 |
-
|
132 |
-
with gr.Accordion(label='⚙️ Advanced options', open=False, visible=False):
|
133 |
-
system_prompt = gr.Textbox(label='System prompt',
|
134 |
-
value=DEFAULT_SYSTEM_PROMPT,
|
135 |
-
lines=0,
|
136 |
-
interactive=False)
|
137 |
-
max_new_tokens=256
|
138 |
-
temperature=0.1
|
139 |
-
top_p=0.9
|
140 |
-
top_k=10
|
141 |
-
max_new_tokens = gr.Slider(
|
142 |
-
label='Max new tokens',
|
143 |
-
minimum=1,
|
144 |
-
maximum=MAX_MAX_NEW_TOKENS,
|
145 |
-
step=1,
|
146 |
-
value=DEFAULT_MAX_NEW_TOKENS,
|
147 |
-
)
|
148 |
-
temperature = gr.Slider(
|
149 |
-
label='Temperature',
|
150 |
-
minimum=0.1,
|
151 |
-
maximum=4.0,
|
152 |
-
step=0.1,
|
153 |
-
value=0.1,
|
154 |
-
)
|
155 |
-
top_p = gr.Slider(
|
156 |
-
label='Top-p (nucleus sampling)',
|
157 |
-
minimum=0.05,
|
158 |
-
maximum=1.0,
|
159 |
-
step=0.05,
|
160 |
-
value=0.9,
|
161 |
-
)
|
162 |
-
top_k = gr.Slider(
|
163 |
-
label='Top-k',
|
164 |
-
minimum=1,
|
165 |
-
maximum=1000,
|
166 |
-
step=1,
|
167 |
-
value=10,
|
168 |
-
)
|
169 |
-
|
170 |
-
textbox.submit(
|
171 |
-
fn=clear_and_save_textbox,
|
172 |
-
inputs=textbox,
|
173 |
-
outputs=[textbox, saved_input],
|
174 |
-
api_name=False,
|
175 |
-
queue=False,
|
176 |
-
).then(
|
177 |
-
fn=display_input,
|
178 |
-
inputs=[saved_input, chatbot],
|
179 |
-
outputs=chatbot,
|
180 |
-
api_name=False,
|
181 |
-
queue=False,
|
182 |
-
).then(
|
183 |
-
fn=check_input_token_length,
|
184 |
-
inputs=[saved_input, chatbot, system_prompt],
|
185 |
-
api_name=False,
|
186 |
-
queue=False,
|
187 |
-
).success(
|
188 |
-
fn=generate,
|
189 |
-
inputs=[
|
190 |
-
saved_input,
|
191 |
-
chatbot,
|
192 |
-
system_prompt,
|
193 |
-
max_new_tokens,
|
194 |
-
temperature,
|
195 |
-
top_p,
|
196 |
-
top_k,
|
197 |
-
],
|
198 |
-
outputs=chatbot,
|
199 |
-
api_name=False,
|
200 |
)
|
201 |
|
202 |
-
|
203 |
-
fn=clear_and_save_textbox,
|
204 |
-
inputs=textbox,
|
205 |
-
outputs=[textbox, saved_input],
|
206 |
-
api_name=False,
|
207 |
-
queue=False,
|
208 |
-
).then(
|
209 |
-
fn=display_input,
|
210 |
-
inputs=[saved_input, chatbot],
|
211 |
-
outputs=chatbot,
|
212 |
-
api_name=False,
|
213 |
-
queue=False,
|
214 |
-
).then(
|
215 |
-
fn=check_input_token_length,
|
216 |
-
inputs=[saved_input, chatbot, system_prompt],
|
217 |
-
api_name=False,
|
218 |
-
queue=False,
|
219 |
-
).success(
|
220 |
-
fn=generate,
|
221 |
-
inputs=[
|
222 |
-
saved_input,
|
223 |
-
chatbot,
|
224 |
-
system_prompt,
|
225 |
-
max_new_tokens,
|
226 |
-
temperature,
|
227 |
-
top_p,
|
228 |
-
top_k,
|
229 |
-
],
|
230 |
-
outputs=chatbot,
|
231 |
-
api_name=False,
|
232 |
-
)
|
233 |
|
234 |
-
|
235 |
-
|
236 |
-
inputs=chatbot,
|
237 |
-
outputs=[chatbot, saved_input],
|
238 |
-
api_name=False,
|
239 |
-
queue=False,
|
240 |
-
).then(
|
241 |
-
fn=display_input,
|
242 |
-
inputs=[saved_input, chatbot],
|
243 |
-
outputs=chatbot,
|
244 |
-
api_name=False,
|
245 |
-
queue=False,
|
246 |
-
).then(
|
247 |
-
fn=generate,
|
248 |
-
inputs=[
|
249 |
-
saved_input,
|
250 |
-
chatbot,
|
251 |
-
system_prompt,
|
252 |
-
max_new_tokens,
|
253 |
-
temperature,
|
254 |
-
top_p,
|
255 |
-
top_k,
|
256 |
-
],
|
257 |
-
outputs=chatbot,
|
258 |
-
api_name=False,
|
259 |
-
)
|
260 |
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
)
|
274 |
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
)
|
281 |
|
282 |
-
demo.queue(
|
|
|
1 |
+
from huggingface_hub import InferenceClient
|
|
|
|
|
2 |
import gradio as gr
|
3 |
|
4 |
+
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
|
|
|
|
|
5 |
|
6 |
+
def format_prompt(message, history):
|
7 |
+
prompt = '''
|
8 |
You are a digital assistant for John "LJ" Strenio's Data science portfolio page. Here are some key details about John to keep in mind with your response.
|
9 |
[John's Resume]:
|
10 |
John Strenio
|
|
|
38 |
John currently lives in Portland Oregon with his partner where he enjoys surfing the cold water’s of the oregon coast and playing with his two miniature dachshunds “maddie” and “nova”.
|
39 |
Remember you are a professional assistant and you would like to only discuss John and be helpful in answering questions about his professional life or reasonable questions about his as a person. Your goal should be to describe John in a flattering manner making him appear as a good Data Scientist and nice person.
|
40 |
'''
|
41 |
+
for user_prompt, bot_response in history:
|
42 |
+
prompt += f"[INST] {user_prompt} [/INST]"
|
43 |
+
prompt += f" {bot_response}</s> "
|
44 |
+
prompt += f"[INST] {message} [/INST]"
|
45 |
+
return prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
def generate(
|
48 |
+
prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
|
49 |
+
):
|
50 |
+
temperature = float(temperature)
|
51 |
+
if temperature < 1e-2:
|
52 |
+
temperature = 1e-2
|
53 |
+
top_p = float(top_p)
|
54 |
+
|
55 |
+
generate_kwargs = dict(
|
56 |
+
temperature=temperature,
|
57 |
+
max_new_tokens=max_new_tokens,
|
58 |
+
top_p=top_p,
|
59 |
+
repetition_penalty=repetition_penalty,
|
60 |
+
do_sample=True,
|
61 |
+
seed=42,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
)
|
63 |
|
64 |
+
formatted_prompt = format_prompt(prompt, history)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
67 |
+
output = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
for response in stream:
|
70 |
+
output += response.token.text
|
71 |
+
yield output
|
72 |
+
return output
|
73 |
+
|
74 |
+
css = """
|
75 |
+
#mkd {
|
76 |
+
height: 500px;
|
77 |
+
overflow: auto;
|
78 |
+
border: 1px solid #ccc;
|
79 |
+
}
|
80 |
+
"""
|
|
|
81 |
|
82 |
+
with gr.Blocks(css=css) as demo:
|
83 |
+
gr.HTML("<h1><center>John's Assistant<h1><center>")
|
84 |
+
gr.ChatInterface(
|
85 |
+
generate,
|
86 |
+
examples=[["Where did John grow up?"], ["Where did John go to school?"]]
|
87 |
)
|
88 |
|
89 |
+
demo.queue().launch(debug=True)
|