estudarPdf / app.py
joinfv's picture
Create app.py
0a802e6 verified
raw
history blame
3.91 kB
import gradio as gr
import spaces
import subprocess
import os
import shutil
import string
import random
import glob
from pypdf import PdfReader
from sentence_transformers import SentenceTransformer
# Configurações do modelo
MODEL_NAME = os.environ.get("MODEL", "Snowflake/snowflake-arctic-embed-m")
CHUNK_SIZE = int(os.environ.get("CHUNK_SIZE", 128))
DEFAULT_MAX_CHARACTERS = int(os.environ.get("DEFAULT_MAX_CHARACTERS", 258))
# Carregue o modelo de linguagem
model = SentenceTransformer(MODEL_NAME)
# Função para incorporar consultas e documentos
@spaces.GPU
def embed(queries, chunks):
query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(chunks)
scores = query_embeddings @ document_embeddings.T
results = {}
for query, query_scores in zip(queries, scores):
chunk_idxs = [i for i in range(len(chunks))]
results[query] = list(zip(chunk_idxs, query_scores))
return results
# Função para extrair texto de arquivos PDF
def extract_text_from_pdf(reader):
full_text = ""
for idx, page in enumerate(reader.pages):
text = page.extract_text()
if len(text) > 0:
full_text += f"---- Página {idx} ----\n" + page.extract_text() + "\n\n"
return full_text.strip()
# Função para converter arquivos em texto
def convert(filename):
plain_text_filetypes = [
".txt",
".csv",
".tsv",
".md",
".yaml",
".toml",
".json",
".json5",
".jsonc",
]
if any(filename.endswith(ft) for ft in plain_text_filetypes):
with open(filename, "r") as f:
return f.read()
if filename.endswith(".pdf"):
return extract_text_from_pdf(PdfReader(filename))
raise ValueError(f"Tipo de arquivo não suportado: {filename}")
# Função para dividir texto em pedaços
def chunk_to_length(text, max_length=512):
chunks = []
while len(text) > max_length:
chunks.append(text[:max_length])
text = text[max_length:]
chunks.append(text)
return chunks
# Função para prever pedaços relevantes
@spaces.GPU
def predict(query, max_characters):
query_embedding = model.encode(query, prompt_name="query")
all_chunks = []
for filename, doc in docs.items():
similarities = doc["embeddings"] @ query_embedding.T
all_chunks.extend([(filename, chunk, sim) for chunk, sim in zip(doc["chunks"], similarities)])
all_chunks.sort(key=lambda x: x[2], reverse=True)
relevant_chunks = {}
total_chars = 0
for filename, chunk, _ in all_chunks:
if total_chars + len(chunk) <= max_characters:
if filename not in relevant_chunks:
relevant_chunks[filename] = []
relevant_chunks[filename].append(chunk)
total_chars += len(chunk)
else:
break
return {"relevant_chunks": relevant_chunks}
# Carregue os documentos
docs = {}
for filename in glob.glob("src/*"):
if filename.endswith("add_your_files_here"):
continue
converted_doc = convert(filename)
chunks = chunk_to_length(converted_doc, CHUNK_SIZE)
embeddings = model.encode(chunks)
docs[filename] = {
"chunks": chunks,
"embeddings": embeddings,
}
# Crie a interface da ferramenta
gr.Interface(
predict,
inputs=[
gr.Textbox(label="Consulta feita sobre os documentos"),
gr.Number(label="Máximo de caracteres de saída", value=DEFAULT_MAX_CHARACTERS),
],
outputs=[gr.Dict(label="Pedaços relevantes")],
title="Demonstração do modelo de ferramenta da comunidade ",
description='''"Para usar o no HuggingChat com seus próprios documentos
, comece clonando este espaço, adicione seus documentos à pasta `src` e então crie uma ferramenta comunitária com este espaço!"
,'''
).launch()