File size: 2,644 Bytes
22be37d
 
 
 
0c94c61
22be37d
 
 
 
0c94c61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7a8e9f
 
 
0c94c61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c3cc21
0c94c61
 
 
 
 
 
 
 
 
 
 
 
22be37d
 
0c94c61
98eaa40
22be37d
0c94c61
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
"""
    For HF, the interface should be called app.py
"""

import pathlib
import streamlit as st

from utils.process_doc import parse_docx, parse_pdf

from Interview import InterviewPage
from CVReview import CVReviewPage

CURRENT_DIR = pathlib.Path(__file__).parent.resolve()


def main():
    st.set_page_config(layout="wide")

    if "api_key" not in st.session_state:
        st.session_state.api_key = ""

    if "report" not in st.session_state:
        st.session_state.report = {}

    if "shared_materials" not in st.session_state:
        st.session_state.shared_materials = {"valid_flag": False, "report": None}

    SHARED_MATERIALS = st.session_state.shared_materials
    st.markdown("\n")
    st.markdown("\n")
    st.markdown("\n")

    with st.sidebar:
        st.session_state["api_key"] = st.text_input(
            "Cohere API Key Entry",
            value="",
            placeholder="Enter your Free Tier Cohere API Key",
        )

        job_posting_upload_box = st.text_area(
            "Job Description Upload Box",
            value="",
            placeholder="Copy and Paste the contents of a job post you are interested in.",
            help="In this box, please dump text content for a job description you are interested in. This could easily be setup to work directly with a webpage (we'd simply need to scrape said page) however I do not want to do that on HF spaces.",
        )

        cv_upload_box = st.file_uploader(
            "CV Upload Box",
            help="Upload your CV in .docx or .pdf form. This CV will be parsed, and used to analyse against the given job post.",
            type=["docx", "pdf"],
            accept_multiple_files=False,
        )

    if cv_upload_box and job_posting_upload_box != "":
        SHARED_MATERIALS["job_posting"] = job_posting_upload_box

        cv_filetype = cv_upload_box.name.split(".")[-1]
        cv_file_contents = cv_upload_box.getvalue()

        SHARED_MATERIALS["cv"] = (
            parse_docx(cv_file_contents)
            if cv_filetype == "docx"
            else parse_pdf(cv_file_contents)
        )

        SHARED_MATERIALS["valid_flag"] = True

    pg = st.navigation(
        {
            "Jonah's AI Job Tools": [
                st.Page(
                    InterviewPage,
                    title="Practice Interview",
                    icon=":material/chat:",
                ),
                st.Page(
                    CVReviewPage,
                    title="CV Review",
                    icon=":material/description:",
                ),
            ],
        }
    )

    pg.run()


if __name__ == "__main__":
    main()