""" CV Review Feature """ import json import concurrent.futures from httpx import LocalProtocolError import streamlit as st from cohere.core.api_error import ApiError from utils.backend import produce_report from utils.format import extract_json def generate_markdown_report(REPORT_OBJ: dict) -> str: """Format the report object dictionary into a markdown readable report""" def add_section(section_title: str, table_contents: list) -> str: """Utility function to add a section containing a table to the markdown report""" if not table_contents: return "" section = f"### {section_title.title()}\n\n" section += ( "| Job Posting Requirement | CV Details | Explanation | Impact Score |\n" "| ----------------------- | ---------- | ----------- | -------------- |\n" ) for table_row in table_contents: section += f"| {table_row.get('jobPostingDetails', 'N/A')} | {table_row.get('cvDetails', 'N/A')} | {table_row.get('explanation', '')} | **{table_row.get('severityScore', 0)}** |\n" return section + "\n" report = ( f"# CV Analysis Report\n\n" f"**Name:** {REPORT_OBJ.get('personName', 'Unknown')} \n" f"**Job:** {REPORT_OBJ.get('jobTitle', 'N/A')} at {REPORT_OBJ.get('companyName', 'N/A')} \n" f"**Job Description:** {REPORT_OBJ.get('jobDesc', 'No description available.')}\n\n" "---\n\n" "## Key Findings\n\n" ) sections = ["experience", "education", "responsibilities", "languages", "tools"] for section in sections: report += add_section(section, REPORT_OBJ.get(section, [])) report += "---\n" return report def CVReviewPage(): """Source Code for CV Review Page""" SHARED_STATE = st.session_state.shared_materials API_KEY = st.session_state.api_key produce_report = st.button("Produce Suitability Report") if produce_report: try: results = {} # We will make 3 calls in parallel, to get various bits of information efficiently with concurrent.futures.ThreadPoolExecutor() as executor: futures = { critique_type: executor.submit( produce_report, SHARED_STATE["cv"], SHARED_STATE["job_posting"], critique_type, API_KEY, ) for critique_type in ["basic", "general", "specific"] } for critique_type, future in futures.items(): results[critique_type] = future.result() except LocalProtocolError: st.error("You need to enter a Cohere API Key.") except ApiError: st.error("You need a valid Cohere API Key") # merge the from our calls, by extracting the json object from the gpt message resultsDict = {} for jsonText in results.values(): _, output_report_json = extract_json(jsonText) resultsDict.update(output_report_json) # store this as the report object SHARED_STATE["report"] = resultsDict # if the report object exists if SHARED_STATE["report"]: REPORT = SHARED_STATE["report"] # these are used for file naming name = REPORT.get("personName", "MissingPersonName") job_title = REPORT.get("jobTitle", "MissingTitle") company_name = REPORT.get("companyName", "MissingCompany") # render markdown report st.markdown(generate_markdown_report(REPORT)) # Downloadable in json form ! st.download_button( label="Download Report JSON", data=json.dumps(REPORT, indent=4), file_name=f"{name}_{job_title}_{company_name}.json", mime="application/json", use_container_width=True, )