File size: 3,622 Bytes
8f0c22d
9b5b26a
 
 
c19d193
6aae614
8fe992b
9b5b26a
 
8f0c22d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5df72d6
9b5b26a
4c32228
 
9b5b26a
4c32228
 
9b5b26a
4c32228
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
96707d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
96707d3
 
41392dc
 
6aae614
e121372
bf6d34c
 
ec30471
fe328e0
13d500a
8c01ffb
 
9b5b26a
 
4c32228
8f0c22d
41392dc
 
ab05e84
41392dc
 
8c01ffb
861422e
 
9b5b26a
8c01ffb
8fe992b
96707d3
8c01ffb
 
 
 
 
 
861422e
8fe992b
 
9b5b26a
8c01ffb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, load_tool, tool, Tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool

from Gradio_UI import GradioUI

class HFModelDownloadsTool(Tool):
    name = "model_download_counter"
    description = """
    This is a tool that returns the most downloaded model of a given task on the Hugging Face Hub.
    It returns the name of the checkpoint."""
    inputs = {
        "task": {
            "type": "string",
            "description": "the task category (such as text-classification, depth-estimation, etc)",
        }
    }
    output_type = "string"

    def forward(self, task: str):
        from huggingface_hub import list_models

        model = next(iter(list_models(filter=task, sort="downloads", direction=-1)))
        return model.id

# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def calculator_multiply(num1:int, num2:int)-> int:
    """A tool that multiplies the two provided numbers. 
    Args:
        num1: the first argument
        num2: the second argument
    """
    return num1 * num2

@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"

@tool
def search_wikipedia(query: str) -> str:
    """
    Fetches a summary of a Wikipedia page for a given query.
    Args:
        query: The search term to look up on Wikipedia.
    Returns:
        str: A summary of the Wikipedia page if successful, or an error message if the request fails.
    Raises:
        requests.exceptions.RequestException: If there is an issue with the HTTP request.
    """
    url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{query}"

    try:
        response = requests.get(url)
        response.raise_for_status()

        data = response.json()
        title = data["title"]
        extract = data["extract"]

        return f"Summary for {title}: {extract}"

    except requests.exceptions.RequestException as e:
        return f"Error fetching Wikipedia data: {str(e)}"


final_answer = FinalAnswerTool()
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
custom_role_conversions=None,
)


# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
web_search_tool = DuckDuckGoSearchTool()
model_downloads_tool = HFModelDownloadsTool()
object_detection_tool = Tool.from_space(
    space_id="kadirnar/Yolov10",
    name="object-detector",
    description="Detect objects within an image"
)

with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)
    
agent = CodeAgent(
    model=model,
    tools=[final_answer, image_generation_tool, web_search_tool, model_downloads_tool, object_detection_tool, search_wikipedia], ## add your tools here (don't remove final answer)
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates
)


GradioUI(agent).launch()