File size: 1,388 Bytes
27f58c9
58f9979
27f58c9
 
 
805bba5
 
 
 
 
 
90f61c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27f58c9
d41dcee
 
90f61c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27f58c9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import gradio as gr
import torch
import os
from huggingface_hub import login


print(f"Is CUDA available: {torch.cuda.is_available()}")

print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")


# # api_key = os.getenv('llama3token')
# # login(api_key)

# HF_TOKEN = os.getenv('llama3token')
# login(HF_TOKEN)

# demo = gr.load("deepseek-ai/DeepSeek-R1-Distill-Llama-8B", src="models")
# demo.launch()


import streamlit as st
import requests

# Hugging Face API URL
API_URL = "https://api-inference.huggingface.co/models/deepseek-ai/DeepSeek-R1-Distill-Llama-8B"

HF_TOKEN = os.getenv('llama3token')


# Function to query the Hugging Face API
def query(payload):
    headers = {"Authorization": f"Bearer {HF_TOKEN}"}
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.json()

# Streamlit app
st.title("DeepSeek-R1-Distill-Qwen-32B Chatbot")

# Input text box
user_input = st.text_input("Enter your message:")

if user_input:
    # Query the Hugging Face API with the user input
    payload = {"inputs": user_input}
    output = query(payload)
    
    # Display the output
    if isinstance(output, list) and len(output) > 0 and 'generated_text' in output[0]:
        st.write("Response:")
        st.write(output[0]['generated_text'])
    else:
        st.write("Error: Unable to generate a response. Please try again.")