Spaces:
Runtime error
Runtime error
File size: 1,388 Bytes
27f58c9 58f9979 27f58c9 805bba5 90f61c2 27f58c9 d41dcee 90f61c2 27f58c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import gradio as gr
import torch
import os
from huggingface_hub import login
print(f"Is CUDA available: {torch.cuda.is_available()}")
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
# # api_key = os.getenv('llama3token')
# # login(api_key)
# HF_TOKEN = os.getenv('llama3token')
# login(HF_TOKEN)
# demo = gr.load("deepseek-ai/DeepSeek-R1-Distill-Llama-8B", src="models")
# demo.launch()
import streamlit as st
import requests
# Hugging Face API URL
API_URL = "https://api-inference.huggingface.co/models/deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
HF_TOKEN = os.getenv('llama3token')
# Function to query the Hugging Face API
def query(payload):
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
# Streamlit app
st.title("DeepSeek-R1-Distill-Qwen-32B Chatbot")
# Input text box
user_input = st.text_input("Enter your message:")
if user_input:
# Query the Hugging Face API with the user input
payload = {"inputs": user_input}
output = query(payload)
# Display the output
if isinstance(output, list) and len(output) > 0 and 'generated_text' in output[0]:
st.write("Response:")
st.write(output[0]['generated_text'])
else:
st.write("Error: Unable to generate a response. Please try again.")
|