Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import spaces | |
import torch | |
import os | |
from huggingface_hub import login | |
from PIL import Image | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
duration=None | |
login(token = os.getenv('deepseekv2')) | |
ckpt = "google/gemma-3-4b-it" | |
model = Gemma3ForConditionalGeneration.from_pretrained( | |
ckpt, device_map="auto", torch_dtype=torch.bfloat16, | |
) | |
processor = AutoProcessor.from_pretrained(ckpt) | |
# image = Image.open(requests.get(url, stream=True).raw) | |
# prompt = "<start_of_image> in this image, there is" | |
# model_inputs = processor(text=prompt, images=image, return_tensors="pt") | |
# input_len = model_inputs["input_ids"].shape[-1] | |
# with torch.inference_mode(): | |
# generation = model.generate(**model_inputs, max_new_tokens=100, do_sample=False) | |
# generation = generation[0][input_len:] | |
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p,): | |
# messages = [{"role": "system", "content": system_message}] | |
messages = [{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "url": "https://huggingface.co/spaces/big-vision/paligemma-hf/resolve/main/examples/password.jpg"}, | |
{"type": "text", "text": "What is the password?"} | |
]}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
# for message in client.chat_completion(messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p,): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
textbox=gr.MultimodalTextbox() | |
multimodal=True, | |
stop_btn="Stop generation", | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |