File size: 3,995 Bytes
ff96e27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import gradio as gr
from huggingface_hub import InferenceClient
import spaces #0.32.0
import torch
import os
import platform
import requests

model = ""
duration = None
token = os.getenv('deepseekv2')
provider = None #'fal-ai' #None #replicate # sambanova

print(f"Is CUDA available: {torch.cuda.is_available()}")
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
print(f"CUDA version: {torch.version.cuda}")
print(f"Python version: {platform.python_version()}")
print(f"Pytorch version: {torch.__version__}")
print(f"Gradio version: {gr. __version__}")
# print(f"HFhub version: {huggingface_hub.__version__}")


"""
Packages ::::::::::
Is CUDA available: True
CUDA device: NVIDIA A100-SXM4-80GB MIG 3g.40gb
CUDA version: 12.1
Python version: 3.10.13
Pytorch version: 2.4.0+cu121
Gradio version: 5.0.1
"""


def choose_model(model_name):
    if model_name == "DeepSeek-R1-Distill-Qwen-1.5B":
        model = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"

    elif model_name == "DeepSeek-R1-Distill-Qwen-32B":
        model = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B"
        
    elif model_name == "Llama3-8b-Instruct":    
        model = "meta-llama/Meta-Llama-3-8B-Instruct"

    elif model_name == "Llama3.1-8b-Instruct":
        model = "meta-llama/Llama-3.1-8B-Instruct"

    elif model_name == "Llama2-13b-chat":
        model = "meta-llama/Llama-2-13b-chat-hf"

    elif model_name == "Gemma-2-2b":
        model = "google/gemma-2-2b-it"

    elif model_name == "Gemma-7b":
        model = "google/gemma-7b"
    
    elif model_name == "Mixtral-8x7B-Instruct":
        model = "mistralai/Mixtral-8x7B-Instruct-v0.1"

    elif model_name == "Microsoft-phi-2":
        model = "microsoft/phi-2"

    elif model_name == "Qwen2.5-Coder-32B-Instruct":
        model = "Qwen/Qwen2.5-Coder-32B-Instruct"

    else:    # default to zephyr if no model chosen
        model = "HuggingFaceH4/zephyr-7b-beta"
    
    return model
    

@spaces.GPU(duration=duration)
def respond(message, history: list[tuple[str, str]], model, system_message, max_tokens, temperature, top_p):

    print(model)
    model_name = choose_model(model)

    client = InferenceClient(model_name, provider=provider, token=os.getenv('deepseekv2'))
    
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p):
        token = message.choices[0].delta.content

        response += token
        yield response

    
demo = gr.ChatInterface(
    respond,
    title="Ask me anything",
    description="Hi there! I am your friendly AI chatbot. Choose from different language models under the Additional Inputs tab below.",
    examples=[["Explain quantum computing"], ["Explain forex trading"], ["What is the capital of China?"], ["Make a poem about nature"]],
    additional_inputs=[
        gr.Dropdown(["DeepSeek-R1-Distill-Qwen-1.5B", "DeepSeek-R1-Distill-Qwen-32B", "Gemma-2-2b", "Gemma-7b", "Llama2-13b-chat", "Llama3-8b-Instruct", "Llama3.1-8b-Instruct", "Microsoft-phi-2", "Mixtral-8x7B-Instruct", "Qwen2.5-Coder-32B-Instruct", "Zephyr-7b-beta"], label="Select Model"),
        gr.Textbox(value="You are a friendly and helpful Chatbot, be concise and straight to the point, avoid excessive reasoning.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
        
    ]
)


if __name__ == "__main__":
    demo.launch(share=True)