from fastapi import FastAPI from langchain_qdrant import QdrantVectorStore from qdrant_client import QdrantClient from qdrant_client.http.models import Distance, VectorParams from langchain_qdrant import FastEmbedSparse, QdrantVectorStore, RetrievalMode from qdrant_client import QdrantClient, models from qdrant_client.http.models import Distance, SparseVectorParams, VectorParams from uuid import uuid4 from langchain_core.documents import Document from typing import Union, List, Dict, Any from pydantic import BaseModel, Field class Data(BaseModel): items: Union[Dict[str, Any], List[Dict[str, Any]]] = Field(..., description="Either a dictionary or a list of dictionaries.") document_1 = Document( page_content="I had chocolate chip pancakes and scrambled eggs for breakfast this morning.", metadata={"source": "tweet"}, ) document_2 = Document( page_content="The weather forecast for tomorrow is cloudy and overcast, with a high of 62 degrees Fahrenheit.", metadata={"source": "news"}, ) document_3 = Document( page_content="Building an exciting new project with LangChain - come check it out!", metadata={"source": "tweet"}, ) document_4 = Document( page_content="Robbers broke into the city bank and stole $1 million in cash.", metadata={"source": "news"}, ) document_5 = Document( page_content="Wow! That was an amazing movie. I can't wait to see it again.", metadata={"source": "tweet"}, ) document_6 = Document( page_content="Is the new iPhone worth the price? Read this review to find out.", metadata={"source": "website"}, ) document_7 = Document( page_content="The top 10 soccer players in the world right now.", metadata={"source": "website"}, ) document_8 = Document( page_content="LangGraph is the best framework for building stateful, agentic applications!", metadata={"source": "tweet"}, ) document_9 = Document( page_content="The stock market is down 500 points today due to fears of a recession.", metadata={"source": "news"}, ) document_10 = Document( page_content="I have a bad feeling I am going to get deleted :(", metadata={"source": "tweet"}, ) documents = [ document_1, document_2, document_3, document_4, document_5, document_6, document_7, document_8, document_9, document_10, ] uuids = [str(uuid4()) for _ in range(len(documents))] docs = documents sparse_embeddings = FastEmbedSparse(model_name="Qdrant/bm25") client = QdrantClient(path="tmp/langchain_qdrant") # Create a collection with sparse vectors client.create_collection( collection_name="my_documents", vectors_config={"dense": VectorParams(size=3072, distance=Distance.COSINE)}, sparse_vectors_config={ "sparse": SparseVectorParams(index=models.SparseIndexParams(on_disk=False)) }, ) qdrant = QdrantVectorStore( client=client, collection_name="my_documents", sparse_embedding=sparse_embeddings, retrieval_mode=RetrievalMode.SPARSE, sparse_vector_name="sparse", ) qdrant.add_documents(documents=documents, ids=uuids) app = FastAPI() @app.get("/get_data") def get_data(query: str): # query = "How much money did the robbers steal?" found_docs = [x.model_dump() for x in qdrant.similarity_search(query)] for doc in found_docs: doc.pop("id", None) # key = for k in list(doc["metadata"].keys()): if k[0] == "_": doc["metadata"].pop(k) return { "data": found_docs } @app.post("/add_data") def add_data(data: Data): global qdrant if isinstance(data.items, dict): qdrant.add_documents(documents=[Document(**data.items)]) else: qdrant.add_documents(documents=[Document(**x.items) for x in data]) return {"message":"Create data successfully!", "status_code":201} @app.get("/") def greet_json(): return {"Hello": "World!"}