from fastapi import FastAPI import os from custom_llm import CustomLLM from pydantic import BaseModel from langchain.prompts import PromptTemplate class ConversationPost(BaseModel): tenant: str | None = None module: str | None = None question: str API_TOKEN = os.environ['HF_API_KEY'] app = FastAPI() prompt = PromptTemplate.from_template("""<|im_start|>system Kamu adalah Asisten AI yang dikembangkan oleh Jonthan Jordan. Jawablah pertanyaan user secara ketat dalam Bahasa Indonesia<|im_end|> <|im_start|>user {question}<|im_end|> <|im_start|>assistant """) llm = prompt | CustomLLM(repo_id="Qwen/Qwen-VL-Chat", model_type='text-generation', api_token=API_TOKEN, max_new_tokens=150).bind(stop=['<|im_end|>']) @app.get("/") def greet_json(): return {"Hello": "World!"} @app.post("/conversation") async def conversation(data : ConversationPost): return {"output":llm.invoke({"question":data.question})}