File size: 4,632 Bytes
c021d8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
"""
Implementation of "Attention is All You Need"
"""

import torch.nn as nn

from .encoder import EncoderBase
from .multi_headed_attn import MultiHeadedAttention
from .position_ffn import PositionwiseFeedForward
from .misc import sequence_mask


class TransformerEncoderLayer(nn.Module):
    """
    A single layer of the transformer encoder.

    Args:
        d_model (int): the dimension of keys/values/queries in
                   MultiHeadedAttention, also the input size of
                   the first-layer of the PositionwiseFeedForward.
        heads (int): the number of head for MultiHeadedAttention.
        d_ff (int): the second-layer of the PositionwiseFeedForward.
        dropout (float): dropout probability(0-1.0).
    """

    def __init__(self, d_model, heads, d_ff, dropout, attention_dropout,
                 max_relative_positions=0):
        super(TransformerEncoderLayer, self).__init__()

        self.self_attn = MultiHeadedAttention(
            heads, d_model, dropout=attention_dropout,
            max_relative_positions=max_relative_positions)
        self.feed_forward = PositionwiseFeedForward(d_model, d_ff, dropout)
        self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
        self.dropout = nn.Dropout(dropout)

    def forward(self, inputs, mask):
        """
        Args:
            inputs (FloatTensor): ``(batch_size, src_len, model_dim)``
            mask (LongTensor): ``(batch_size, 1, src_len)``

        Returns:
            (FloatTensor):

            * outputs ``(batch_size, src_len, model_dim)``
        """
        input_norm = self.layer_norm(inputs)
        context, _ = self.self_attn(input_norm, input_norm, input_norm,
                                    mask=mask, attn_type="self")
        out = self.dropout(context) + inputs
        return self.feed_forward(out)

    def update_dropout(self, dropout, attention_dropout):
        self.self_attn.update_dropout(attention_dropout)
        self.feed_forward.update_dropout(dropout)
        self.dropout.p = dropout


class TransformerEncoder(EncoderBase):
    """The Transformer encoder from "Attention is All You Need"
    :cite:`DBLP:journals/corr/VaswaniSPUJGKP17`

    .. mermaid::

       graph BT
          A[input]
          B[multi-head self-attn]
          C[feed forward]
          O[output]
          A --> B
          B --> C
          C --> O

    Args:
        num_layers (int): number of encoder layers
        d_model (int): size of the model
        heads (int): number of heads
        d_ff (int): size of the inner FF layer
        dropout (float): dropout parameters
        embeddings (onmt.modules.Embeddings):
          embeddings to use, should have positional encodings

    Returns:
        (torch.FloatTensor, torch.FloatTensor):

        * embeddings ``(src_len, batch_size, model_dim)``
        * memory_bank ``(src_len, batch_size, model_dim)``
    """

    def __init__(self, num_layers, d_model, heads, d_ff, dropout,
                 attention_dropout, embeddings, max_relative_positions):
        super(TransformerEncoder, self).__init__()

        self.embeddings = embeddings
        self.transformer = nn.ModuleList(
            [TransformerEncoderLayer(
                d_model, heads, d_ff, dropout, attention_dropout,
                max_relative_positions=max_relative_positions)
             for i in range(num_layers)])
        self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)

    @classmethod
    def from_opt(cls, opt, embeddings):
        """Alternate constructor."""
        return cls(
            opt.enc_layers,
            opt.enc_rnn_size,
            opt.heads,
            opt.transformer_ff,
            opt.dropout[0] if type(opt.dropout) is list else opt.dropout,
            opt.attention_dropout[0] if type(opt.attention_dropout)
            is list else opt.attention_dropout,
            embeddings,
            opt.max_relative_positions)

    def forward(self, src, lengths=None):
        """See :func:`EncoderBase.forward()`"""
        self._check_args(src, lengths)

        emb = self.embeddings(src)

        out = emb.transpose(0, 1).contiguous()
        mask = ~sequence_mask(lengths).unsqueeze(1)
        # Run the forward pass of every layer of the tranformer.
        for layer in self.transformer:
            out = layer(out, mask)
        out = self.layer_norm(out)

        return emb, out.transpose(0, 1).contiguous(), lengths

    def update_dropout(self, dropout, attention_dropout):
        self.embeddings.update_dropout(dropout)
        for layer in self.transformer:
            layer.update_dropout(dropout, attention_dropout)