File size: 2,867 Bytes
ff27b25 9846174 ff27b25 2b533d9 fcdedfa f25bddf 3afae8b 96e897e 3afae8b 96e897e 3afae8b 96e897e 3afae8b 9846174 5e8cde2 099b4a7 ff27b25 3afae8b 96e897e 673ee78 ff27b25 2b533d9 723aec0 ff27b25 3100f7a f7cbd98 ff27b25 fcdedfa ff27b25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
import os
os.system("pip install gfpgan")
os.system("pip freeze")
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth -P .")
import random
import gradio as gr
from PIL import Image
import torch
torch.hub.download_url_to_file('https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Abraham_Lincoln_O-77_matte_collodion_print.jpg/1024px-Abraham_Lincoln_O-77_matte_collodion_print.jpg', 'lincoln.jpg')
torch.hub.download_url_to_file('https://upload.wikimedia.org/wikipedia/commons/5/50/Albert_Einstein_%28Nobel%29.png', 'einstein.png')
import cv2
import glob
import numpy as np
from basicsr.utils import imwrite
from gfpgan import GFPGANer
# background upsampler
if not torch.cuda.is_available(): # CPU
import warnings
warnings.warn('The unoptimized RealESRGAN is very slow on CPU. We do not use it. '
'If you really want to use it, please modify the corresponding codes.')
bg_upsampler = None
else:
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
bg_upsampler = RealESRGANer(
scale=2,
model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth',
model=model,
tile=400,
tile_pad=10,
pre_pad=0,
half=True) # need to set False in CPU mode
# set up GFPGAN restorer
restorer = GFPGANer(
model_path='GFPGANCleanv1-NoCE-C2.pth',
upscale=2,
arch='clean',
channel_multiplier=2,
bg_upsampler=bg_upsampler)
def inference(img):
input_img = cv2.imread(img, cv2.IMREAD_COLOR)
cropped_faces, restored_faces, restored_img = restorer.enhance(
input_img, has_aligned=False, only_center_face=False, paste_back=True)
return Image.fromarray(restored_faces[0])
title = "GFP-GAN"
description = "Gradio demo for GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Please click submit only once"
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2101.04061'>Towards Real-World Blind Face Restoration with Generative Facial Prior</a> | <a href='https://github.com/TencentARC/GFPGAN'>Github Repo</a></p><center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_GFPGAN' alt='visitor badge'></center>"
gr.Interface(
inference,
[gr.inputs.Image(type="filepath", label="Input",shape=(512,512))],
gr.outputs.Image(type="pil", label="Output"),
title=title,
description=description,
article=article,
examples=[
['lincoln.jpg'],
['einstein.png']
],
enable_queue=True
).launch(debug=True) |