File size: 8,809 Bytes
75c6e9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
from torchlibrosa.stft import STFT, ISTFT, magphase
import torch
import torch.nn as nn
import numpy as np
from tools.pytorch.modules.pqmf import PQMF


class FDomainHelper(nn.Module):
    def __init__(
        self,
        window_size=2048,
        hop_size=441,
        center=True,
        pad_mode='reflect',
        window='hann',
        freeze_parameters=True,
        subband=None,
        root="/Users/admin/Documents/projects/",
    ):
        super(FDomainHelper, self).__init__()
        self.subband = subband
        if self.subband is None:
            self.stft = STFT(
                n_fft=window_size,
                hop_length=hop_size,
                win_length=window_size,
                window=window,
                center=center,
                pad_mode=pad_mode,
                freeze_parameters=freeze_parameters,
            )

            self.istft = ISTFT(
                n_fft=window_size,
                hop_length=hop_size,
                win_length=window_size,
                window=window,
                center=center,
                pad_mode=pad_mode,
                freeze_parameters=freeze_parameters,
            )
        else:
            self.stft = STFT(
                n_fft=window_size // self.subband,
                hop_length=hop_size // self.subband,
                win_length=window_size // self.subband,
                window=window,
                center=center,
                pad_mode=pad_mode,
                freeze_parameters=freeze_parameters,
            )

            self.istft = ISTFT(
                n_fft=window_size // self.subband,
                hop_length=hop_size // self.subband,
                win_length=window_size // self.subband,
                window=window,
                center=center,
                pad_mode=pad_mode,
                freeze_parameters=freeze_parameters,
            )

        if subband is not None and root is not None:
            self.qmf = PQMF(subband, 64, root)

    def complex_spectrogram(self, input, eps=0.0):
        # [batchsize, samples]
        # return [batchsize, 2, t-steps, f-bins]
        real, imag = self.stft(input)
        return torch.cat([real, imag], dim=1)

    def reverse_complex_spectrogram(self, input, eps=0.0, length=None):
        # [batchsize, 2[real,imag], t-steps, f-bins]
        wav = self.istft(input[:, 0:1, ...], input[:, 1:2, ...], length=length)
        return wav

    def spectrogram(self, input, eps=0.0):
        (real, imag) = self.stft(input.float())
        return torch.clamp(real ** 2 + imag ** 2, eps, np.inf) ** 0.5

    def spectrogram_phase(self, input, eps=0.0):
        (real, imag) = self.stft(input.float())
        mag = torch.clamp(real ** 2 + imag ** 2, eps, np.inf) ** 0.5
        cos = real / mag
        sin = imag / mag
        return mag, cos, sin

    def wav_to_spectrogram_phase(self, input, eps=1e-8):
        """Waveform to spectrogram.

        Args:
          input: (batch_size, channels_num, segment_samples)

        Outputs:
          output: (batch_size, channels_num, time_steps, freq_bins)
        """
        sp_list = []
        cos_list = []
        sin_list = []
        channels_num = input.shape[1]
        for channel in range(channels_num):
            mag, cos, sin = self.spectrogram_phase(input[:, channel, :], eps=eps)
            sp_list.append(mag)
            cos_list.append(cos)
            sin_list.append(sin)

        sps = torch.cat(sp_list, dim=1)
        coss = torch.cat(cos_list, dim=1)
        sins = torch.cat(sin_list, dim=1)
        return sps, coss, sins

    def spectrogram_phase_to_wav(self, sps, coss, sins, length):
        channels_num = sps.size()[1]
        res = []
        for i in range(channels_num):
            res.append(
                self.istft(
                    sps[:, i : i + 1, ...] * coss[:, i : i + 1, ...],
                    sps[:, i : i + 1, ...] * sins[:, i : i + 1, ...],
                    length,
                )
            )
            res[-1] = res[-1].unsqueeze(1)
        return torch.cat(res, dim=1)

    def wav_to_spectrogram(self, input, eps=1e-8):
        """Waveform to spectrogram.

        Args:
          input: (batch_size,channels_num, segment_samples)

        Outputs:
          output: (batch_size, channels_num, time_steps, freq_bins)
        """
        sp_list = []
        channels_num = input.shape[1]
        for channel in range(channels_num):
            sp_list.append(self.spectrogram(input[:, channel, :], eps=eps))
        output = torch.cat(sp_list, dim=1)
        return output

    def spectrogram_to_wav(self, input, spectrogram, length=None):
        """Spectrogram to waveform.
        Args:
          input: (batch_size, segment_samples, channels_num)
          spectrogram: (batch_size, channels_num, time_steps, freq_bins)

        Outputs:
          output: (batch_size, segment_samples, channels_num)
        """
        channels_num = input.shape[1]
        wav_list = []
        for channel in range(channels_num):
            (real, imag) = self.stft(input[:, channel, :])
            (_, cos, sin) = magphase(real, imag)
            wav_list.append(
                self.istft(
                    spectrogram[:, channel : channel + 1, :, :] * cos,
                    spectrogram[:, channel : channel + 1, :, :] * sin,
                    length,
                )
            )

        output = torch.stack(wav_list, dim=1)
        return output

    # todo the following code is not bug free!
    def wav_to_complex_spectrogram(self, input, eps=0.0):
        # [batchsize , channels, samples]
        # [batchsize, 2[real,imag]*channels, t-steps, f-bins]
        res = []
        channels_num = input.shape[1]
        for channel in range(channels_num):
            res.append(self.complex_spectrogram(input[:, channel, :], eps=eps))
        return torch.cat(res, dim=1)

    def complex_spectrogram_to_wav(self, input, eps=0.0, length=None):
        # [batchsize, 2[real,imag]*channels, t-steps, f-bins]
        # return  [batchsize, channels, samples]
        channels = input.size()[1] // 2
        wavs = []
        for i in range(channels):
            wavs.append(
                self.reverse_complex_spectrogram(
                    input[:, 2 * i : 2 * i + 2, ...], eps=eps, length=length
                )
            )
            wavs[-1] = wavs[-1].unsqueeze(1)
        return torch.cat(wavs, dim=1)

    def wav_to_complex_subband_spectrogram(self, input, eps=0.0):
        # [batchsize, channels, samples]
        # [batchsize, 2[real,imag]*subband*channels, t-steps, f-bins]
        subwav = self.qmf.analysis(input)  # [batchsize, subband*channels, samples]
        subspec = self.wav_to_complex_spectrogram(subwav)
        return subspec

    def complex_subband_spectrogram_to_wav(self, input, eps=0.0):
        # [batchsize, 2[real,imag]*subband*channels, t-steps, f-bins]
        # [batchsize, channels, samples]
        subwav = self.complex_spectrogram_to_wav(input)
        data = self.qmf.synthesis(subwav)
        return data

    def wav_to_mag_phase_subband_spectrogram(self, input, eps=1e-8):
        """
        :param input:
        :param eps:
        :return:
            loss = torch.nn.L1Loss()
            model = FDomainHelper(subband=4)
            data = torch.randn((3,1, 44100*3))

            sps, coss, sins = model.wav_to_mag_phase_subband_spectrogram(data)
            wav = model.mag_phase_subband_spectrogram_to_wav(sps,coss,sins,44100*3//4)

            print(loss(data,wav))
            print(torch.max(torch.abs(data-wav)))

        """
        # [batchsize, channels, samples]
        # [batchsize, 2[real,imag]*subband*channels, t-steps, f-bins]
        subwav = self.qmf.analysis(input)  # [batchsize, subband*channels, samples]
        sps, coss, sins = self.wav_to_spectrogram_phase(subwav, eps=eps)
        return sps, coss, sins

    def mag_phase_subband_spectrogram_to_wav(self, sps, coss, sins, length, eps=0.0):
        # [batchsize, 2[real,imag]*subband*channels, t-steps, f-bins]
        # [batchsize, channels, samples]
        subwav = self.spectrogram_phase_to_wav(sps, coss, sins, length)
        data = self.qmf.synthesis(subwav)
        return data


if __name__ == "__main__":
    # from thop import profile
    # from thop import clever_format
    # from tools.file.wav import *
    # import time
    #
    # wav = torch.randn((1,2,44100))
    # model = FDomainHelper()

    from tools.file.wav import *

    loss = torch.nn.L1Loss()
    model = FDomainHelper()
    data = torch.randn((3, 1, 44100 * 5))

    sps = model.wav_to_complex_spectrogram(data)
    print(sps.size())
    wav = model.complex_spectrogram_to_wav(sps, 44100 * 5)

    print(loss(data, wav))
    print(torch.max(torch.abs(data - wav)))