Spaces:
Runtime error
Runtime error
File size: 4,385 Bytes
75c6e9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
'''
@File : subband_util.py
@Contact : [email protected]
@License : (C)Copyright 2020-2021
@Modify Time @Author @Version @Desciption
------------ ------- -------- -----------
2020/4/3 4:54 PM Haohe Liu 1.0 None
'''
import torch
import torch.nn.functional as F
import torch.nn as nn
import numpy as np
import os.path as op
from scipy.io import loadmat
def load_mat2numpy(fname=""):
'''
Args:
fname: pth to mat
type:
Returns: dic object
'''
if len(fname) == 0:
return None
else:
return loadmat(fname)
class PQMF(nn.Module):
def __init__(self, N, M, project_root):
super().__init__()
self.N = N # nsubband
self.M = M # nfilter
try:
assert (N, M) in [(8, 64), (4, 64), (2, 64)]
except:
print("Warning:", N, "subbandand ", M, " filter is not supported")
self.pad_samples = 64
self.name = str(N) + "_" + str(M) + ".mat"
self.ana_conv_filter = nn.Conv1d(
1, out_channels=N, kernel_size=M, stride=N, bias=False
)
data = load_mat2numpy(op.join(project_root, "f_" + self.name))
data = data['f'].astype(np.float32) / N
data = np.flipud(data.T).T
data = np.reshape(data, (N, 1, M)).copy()
dict_new = self.ana_conv_filter.state_dict().copy()
dict_new['weight'] = torch.from_numpy(data)
self.ana_pad = nn.ConstantPad1d((M - N, 0), 0)
self.ana_conv_filter.load_state_dict(dict_new)
self.syn_pad = nn.ConstantPad1d((0, M // N - 1), 0)
self.syn_conv_filter = nn.Conv1d(
N, out_channels=N, kernel_size=M // N, stride=1, bias=False
)
gk = load_mat2numpy(op.join(project_root, "h_" + self.name))
gk = gk['h'].astype(np.float32)
gk = np.transpose(np.reshape(gk, (N, M // N, N)), (1, 0, 2)) * N
gk = np.transpose(gk[::-1, :, :], (2, 1, 0)).copy()
dict_new = self.syn_conv_filter.state_dict().copy()
dict_new['weight'] = torch.from_numpy(gk)
self.syn_conv_filter.load_state_dict(dict_new)
for param in self.parameters():
param.requires_grad = False
def __analysis_channel(self, inputs):
return self.ana_conv_filter(self.ana_pad(inputs))
def __systhesis_channel(self, inputs):
ret = self.syn_conv_filter(self.syn_pad(inputs)).permute(0, 2, 1)
return torch.reshape(ret, (ret.shape[0], 1, -1))
def analysis(self, inputs):
'''
:param inputs: [batchsize,channel,raw_wav],value:[0,1]
:return:
'''
inputs = F.pad(inputs, ((0, self.pad_samples)))
ret = None
for i in range(inputs.size()[1]): # channels
if ret is None:
ret = self.__analysis_channel(inputs[:, i : i + 1, :])
else:
ret = torch.cat(
(ret, self.__analysis_channel(inputs[:, i : i + 1, :])), dim=1
)
return ret
def synthesis(self, data):
'''
:param data: [batchsize,self.N*K,raw_wav_sub],value:[0,1]
:return:
'''
ret = None
# data = F.pad(data,((0,self.pad_samples//self.N)))
for i in range(data.size()[1]): # channels
if i % self.N == 0:
if ret is None:
ret = self.__systhesis_channel(data[:, i : i + self.N, :])
else:
new = self.__systhesis_channel(data[:, i : i + self.N, :])
ret = torch.cat((ret, new), dim=1)
ret = ret[..., : -self.pad_samples]
return ret
def forward(self, inputs):
return self.ana_conv_filter(self.ana_pad(inputs))
if __name__ == "__main__":
import torch
import numpy as np
import matplotlib.pyplot as plt
from tools.file.wav import *
pqmf = PQMF(N=4, M=64, project_root="/Users/admin/Documents/projects")
rs = np.random.RandomState(0)
x = torch.tensor(rs.rand(4, 2, 32000), dtype=torch.float32)
a1 = pqmf.analysis(x)
a2 = pqmf.synthesis(a1)
print(a2.size(), x.size())
plt.subplot(211)
plt.plot(x[0, 0, -500:])
plt.subplot(212)
plt.plot(a2[0, 0, -500:])
plt.plot(x[0, 0, -500:] - a2[0, 0, -500:])
plt.show()
print(torch.sum(torch.abs(x[...] - a2[...])))
|