Spaces:
Sleeping
Sleeping
Deploy DeepSeek LLM chatbot
Browse files- app.py +66 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load DeepSeek LLM
|
6 |
+
model_name = "deepseek-ai/deepseek-llm-7b-chat"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
9 |
+
|
10 |
+
SYSTEM_PROMPT = "You are a helpful AI assistant. Keep responses concise and informative."
|
11 |
+
|
12 |
+
def generate_response(message, history):
|
13 |
+
history = history or []
|
14 |
+
history.append(("User", message))
|
15 |
+
|
16 |
+
# Add system message for better guidance
|
17 |
+
input_text = f"[SYSTEM] {SYSTEM_PROMPT}\n" + tokenizer.apply_chat_template(history, tokenize=False, add_generation_prompt=True)
|
18 |
+
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
|
19 |
+
|
20 |
+
streamer = tokenizer.streamer()
|
21 |
+
model.generate(**inputs, streamer=streamer, max_length=512, pad_token_id=tokenizer.eos_token_id)
|
22 |
+
|
23 |
+
bot_message = ""
|
24 |
+
for token in streamer:
|
25 |
+
bot_message += token
|
26 |
+
yield bot_message
|
27 |
+
|
28 |
+
# Create Gradio Chatbot UI with streaming
|
29 |
+
with gr.Blocks() as demo:
|
30 |
+
gr.Markdown("### π DeepSeek LLM Chatbot (Streaming & Improved UI)")
|
31 |
+
|
32 |
+
chatbot = gr.Chatbot()
|
33 |
+
msg = gr.Textbox(placeholder="Type your message here...", label="Your Message")
|
34 |
+
clear_btn = gr.Button("Clear Chat")
|
35 |
+
|
36 |
+
def respond(message, history):
|
37 |
+
history = history or []
|
38 |
+
bot_response = generate_response(message, history)
|
39 |
+
return bot_response, history + [("User", message), ("Bot", bot_response)]
|
40 |
+
|
41 |
+
msg.submit(respond, inputs=[msg, chatbot], outputs=[chatbot, msg])
|
42 |
+
clear_btn.click(lambda: ([], ""), outputs=[chatbot, msg])
|
43 |
+
|
44 |
+
demo.launch()
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
# with gr.Blocks() as demo:
|
49 |
+
# gr.Markdown("### π DeepSeek LLM Chatbot (Streaming Enabled)")
|
50 |
+
# chat = gr.ChatInterface(fn=generate_response)
|
51 |
+
|
52 |
+
# demo.launch()
|
53 |
+
|
54 |
+
'''
|
55 |
+
β
Uses streaming (streamer=tokenizer.streamer())
|
56 |
+
β
Returns tokens in real-time instead of waiting for full response
|
57 |
+
β
Improved UI with gr.Blocks()
|
58 |
+
|
59 |
+
β
System prompt ensures responses are concise & helpful
|
60 |
+
β
Chat history is structured more clearly
|
61 |
+
|
62 |
+
β
Retains chat history
|
63 |
+
β
"Clear Chat" button
|
64 |
+
β
Better UI layout with Markdown & structured input boxes
|
65 |
+
|
66 |
+
'''
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
transformers
|
3 |
+
torch
|
4 |
+
accelerate
|