Spaces:
Build error
Build error
joselobenitezg
commited on
Commit
·
2e49a94
1
Parent(s):
607956f
add depth
Browse files- app.py +13 -2
- inference/depth.py +211 -0
app.py
CHANGED
@@ -7,13 +7,13 @@ import spaces
|
|
7 |
|
8 |
from inference.seg import process_image_or_video as process_seg
|
9 |
from inference.pose import process_image_or_video as process_pose
|
|
|
10 |
from config import SAPIENS_LITE_MODELS_PATH
|
11 |
|
12 |
def update_model_choices(task):
|
13 |
model_choices = list(SAPIENS_LITE_MODELS_PATH[task.lower()].keys())
|
14 |
return gr.Dropdown(choices=model_choices, value=model_choices[0] if model_choices else None)
|
15 |
|
16 |
-
@spaces.GPU(duration=12)
|
17 |
def process_image(input_image, task, version):
|
18 |
if isinstance(input_image, np.ndarray):
|
19 |
input_image = Image.fromarray(input_image)
|
@@ -22,6 +22,8 @@ def process_image(input_image, task, version):
|
|
22 |
result = process_seg(input_image, task=task.lower(), version=version)
|
23 |
elif task.lower() == 'pose':
|
24 |
result = process_pose(input_image, task=task.lower(), version=version)
|
|
|
|
|
25 |
else:
|
26 |
result = None
|
27 |
print(f"Tarea no soportada: {task}")
|
@@ -42,7 +44,16 @@ def process_video(input_video, task, version):
|
|
42 |
break
|
43 |
|
44 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
if processed_frame is not None:
|
48 |
processed_frame_bgr = cv2.cvtColor(np.array(processed_frame), cv2.COLOR_RGB2BGR)
|
|
|
7 |
|
8 |
from inference.seg import process_image_or_video as process_seg
|
9 |
from inference.pose import process_image_or_video as process_pose
|
10 |
+
from inference.depth import process_image_or_video as process_depth
|
11 |
from config import SAPIENS_LITE_MODELS_PATH
|
12 |
|
13 |
def update_model_choices(task):
|
14 |
model_choices = list(SAPIENS_LITE_MODELS_PATH[task.lower()].keys())
|
15 |
return gr.Dropdown(choices=model_choices, value=model_choices[0] if model_choices else None)
|
16 |
|
|
|
17 |
def process_image(input_image, task, version):
|
18 |
if isinstance(input_image, np.ndarray):
|
19 |
input_image = Image.fromarray(input_image)
|
|
|
22 |
result = process_seg(input_image, task=task.lower(), version=version)
|
23 |
elif task.lower() == 'pose':
|
24 |
result = process_pose(input_image, task=task.lower(), version=version)
|
25 |
+
elif task.lower() == 'depth':
|
26 |
+
result = process_depth(input_image, task=task.lower(), version=version)
|
27 |
else:
|
28 |
result = None
|
29 |
print(f"Tarea no soportada: {task}")
|
|
|
44 |
break
|
45 |
|
46 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
47 |
+
if task.lower() == 'seg':
|
48 |
+
processed_frame = process_seg(frame_rgb, task=task.lower(), version=version)
|
49 |
+
elif task.lower() == 'pose':
|
50 |
+
processed_frame = process_pose(frame_rgb, task=task.lower(), version=version)
|
51 |
+
elif task.lower() == 'depth':
|
52 |
+
processed_frame = process_depth(frame_rgb, task=task.lower(), version=version)
|
53 |
+
else:
|
54 |
+
processed_frame = None
|
55 |
+
print(f"Tarea no soportada: {task}")
|
56 |
+
break
|
57 |
|
58 |
if processed_frame is not None:
|
59 |
processed_frame_bgr = cv2.cvtColor(np.array(processed_frame), cv2.COLOR_RGB2BGR)
|
inference/depth.py
CHANGED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# # Example usage
|
2 |
+
# import torch
|
3 |
+
# import numpy as np
|
4 |
+
# from PIL import Image
|
5 |
+
# from torchvision import transforms
|
6 |
+
# from config import LABELS_TO_IDS
|
7 |
+
# from utils.vis_utils import visualize_mask_with_overlay
|
8 |
+
|
9 |
+
# import torch
|
10 |
+
# import torch.nn.functional as F
|
11 |
+
# import numpy as np
|
12 |
+
# import cv2
|
13 |
+
|
14 |
+
# TASK = 'depth'
|
15 |
+
# VERSION = 'sapiens_0.3b'
|
16 |
+
|
17 |
+
# model_path = get_model_path(TASK, VERSION)
|
18 |
+
# print(model_path)
|
19 |
+
|
20 |
+
# model = torch.jit.load(model_path)
|
21 |
+
# model.eval()
|
22 |
+
# model.to("cuda")
|
23 |
+
|
24 |
+
|
25 |
+
# def get_depth(image, depth_model, input_shape=(3, 1024, 768), device="cuda"):
|
26 |
+
# # Preprocess the image
|
27 |
+
# img = preprocess_image(image, input_shape)
|
28 |
+
|
29 |
+
# # Run the model
|
30 |
+
# with torch.no_grad():
|
31 |
+
# result = depth_model(img.to(device))
|
32 |
+
|
33 |
+
# # Post-process the output
|
34 |
+
# depth_map = post_process_depth(result, (image.shape[0], image.shape[1]))
|
35 |
+
|
36 |
+
# # Visualize the depth map
|
37 |
+
# depth_image = visualize_depth(depth_map)
|
38 |
+
|
39 |
+
# return depth_image, depth_map
|
40 |
+
|
41 |
+
# def preprocess_image(image, input_shape):
|
42 |
+
# img = cv2.resize(image, (input_shape[2], input_shape[1]), interpolation=cv2.INTER_LINEAR).transpose(2, 0, 1)
|
43 |
+
# img = torch.from_numpy(img)
|
44 |
+
# img = img[[2, 1, 0], ...].float()
|
45 |
+
# mean = torch.tensor([123.5, 116.5, 103.5]).view(-1, 1, 1)
|
46 |
+
# std = torch.tensor([58.5, 57.0, 57.5]).view(-1, 1, 1)
|
47 |
+
# img = (img - mean) / std
|
48 |
+
# return img.unsqueeze(0)
|
49 |
+
|
50 |
+
# def post_process_depth(result, original_shape):
|
51 |
+
# # Check the dimensionality of the result
|
52 |
+
# if result.dim() == 3:
|
53 |
+
# result = result.unsqueeze(0)
|
54 |
+
# elif result.dim() == 4:
|
55 |
+
# pass
|
56 |
+
# else:
|
57 |
+
# raise ValueError(f"Unexpected result dimension: {result.dim()}")
|
58 |
+
|
59 |
+
# # Ensure we're interpolating to the correct dimensions
|
60 |
+
# seg_logits = F.interpolate(result, size=original_shape, mode="bilinear", align_corners=False).squeeze(0)
|
61 |
+
# depth_map = seg_logits.data.float().cpu().numpy()
|
62 |
+
|
63 |
+
# # If depth_map has an extra dimension, squeeze it
|
64 |
+
# if depth_map.ndim == 3 and depth_map.shape[0] == 1:
|
65 |
+
# depth_map = depth_map.squeeze(0)
|
66 |
+
|
67 |
+
# return depth_map
|
68 |
+
|
69 |
+
# def visualize_depth(depth_map):
|
70 |
+
# # Normalize the depth map
|
71 |
+
# min_val, max_val = np.nanmin(depth_map), np.nanmax(depth_map)
|
72 |
+
# depth_normalized = 1 - ((depth_map - min_val) / (max_val - min_val))
|
73 |
+
|
74 |
+
# # Convert to uint8
|
75 |
+
# depth_normalized = (depth_normalized * 255).astype(np.uint8)
|
76 |
+
|
77 |
+
# # Apply colormap
|
78 |
+
# depth_colored = cv2.applyColorMap(depth_normalized, cv2.COLORMAP_INFERNO)
|
79 |
+
|
80 |
+
# return depth_colored
|
81 |
+
|
82 |
+
# # You can add the surface normal calculation if needed
|
83 |
+
# def calculate_surface_normal(depth_map):
|
84 |
+
# kernel_size = 7
|
85 |
+
# grad_x = cv2.Sobel(depth_map.astype(np.float32), cv2.CV_32F, 1, 0, ksize=kernel_size)
|
86 |
+
# grad_y = cv2.Sobel(depth_map.astype(np.float32), cv2.CV_32F, 0, 1, ksize=kernel_size)
|
87 |
+
# z = np.full(grad_x.shape, -1)
|
88 |
+
# normals = np.dstack((-grad_x, -grad_y, z))
|
89 |
+
|
90 |
+
# normals_mag = np.linalg.norm(normals, axis=2, keepdims=True)
|
91 |
+
# with np.errstate(divide="ignore", invalid="ignore"):
|
92 |
+
# normals_normalized = normals / (normals_mag + 1e-5)
|
93 |
+
|
94 |
+
# normals_normalized = np.nan_to_num(normals_normalized, nan=-1, posinf=-1, neginf=-1)
|
95 |
+
# normal_from_depth = ((normals_normalized + 1) / 2 * 255).astype(np.uint8)
|
96 |
+
# normal_from_depth = normal_from_depth[:, :, ::-1] # RGB to BGR for cv2
|
97 |
+
|
98 |
+
# return normal_from_depth
|
99 |
+
|
100 |
+
# from utils.vis_utils import resize_image
|
101 |
+
|
102 |
+
# pil_image = Image.open('/home/user/app/assets/image.webp')
|
103 |
+
|
104 |
+
# # Load and process an image
|
105 |
+
# image = cv2.imread('/home/user/app/assets/frame.png')
|
106 |
+
# depth_image, depth_map = get_depth(image, model)
|
107 |
+
|
108 |
+
# surface_normal = calculate_surface_normal(depth_map)
|
109 |
+
# cv2.imwrite("output_surface_normal.jpg", surface_normal)
|
110 |
+
# # Save the results
|
111 |
+
# output_im = cv2.imwrite("output_depth_image2.jpg", depth_image)
|
112 |
+
|
113 |
+
import torch
|
114 |
+
import torch.nn.functional as F
|
115 |
+
import numpy as np
|
116 |
+
import cv2
|
117 |
+
from PIL import Image
|
118 |
+
from config import SAPIENS_LITE_MODELS_PATH
|
119 |
+
|
120 |
+
def load_model(task, version):
|
121 |
+
try:
|
122 |
+
model_path = SAPIENS_LITE_MODELS_PATH[task][version]
|
123 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
124 |
+
model = torch.jit.load(model_path)
|
125 |
+
model.eval()
|
126 |
+
model.to(device)
|
127 |
+
return model, device
|
128 |
+
except KeyError as e:
|
129 |
+
print(f"Error: Tarea o versión inválida. {e}")
|
130 |
+
return None, None
|
131 |
+
|
132 |
+
def preprocess_image(image, input_shape):
|
133 |
+
img = cv2.resize(image, (input_shape[2], input_shape[1]), interpolation=cv2.INTER_LINEAR).transpose(2, 0, 1)
|
134 |
+
img = torch.from_numpy(img)
|
135 |
+
img = img[[2, 1, 0], ...].float()
|
136 |
+
mean = torch.tensor([123.5, 116.5, 103.5]).view(-1, 1, 1)
|
137 |
+
std = torch.tensor([58.5, 57.0, 57.5]).view(-1, 1, 1)
|
138 |
+
img = (img - mean) / std
|
139 |
+
return img.unsqueeze(0)
|
140 |
+
|
141 |
+
def post_process_depth(result, original_shape):
|
142 |
+
if result.dim() == 3:
|
143 |
+
result = result.unsqueeze(0)
|
144 |
+
elif result.dim() == 4:
|
145 |
+
pass
|
146 |
+
else:
|
147 |
+
raise ValueError(f"Unexpected result dimension: {result.dim()}")
|
148 |
+
|
149 |
+
seg_logits = F.interpolate(result, size=original_shape, mode="bilinear", align_corners=False).squeeze(0)
|
150 |
+
depth_map = seg_logits.data.float().cpu().numpy()
|
151 |
+
|
152 |
+
if depth_map.ndim == 3 and depth_map.shape[0] == 1:
|
153 |
+
depth_map = depth_map.squeeze(0)
|
154 |
+
|
155 |
+
return depth_map
|
156 |
+
|
157 |
+
def visualize_depth(depth_map):
|
158 |
+
min_val, max_val = np.nanmin(depth_map), np.nanmax(depth_map)
|
159 |
+
depth_normalized = 1 - ((depth_map - min_val) / (max_val - min_val))
|
160 |
+
depth_normalized = (depth_normalized * 255).astype(np.uint8)
|
161 |
+
depth_colored = cv2.applyColorMap(depth_normalized, cv2.COLORMAP_INFERNO)
|
162 |
+
return depth_colored
|
163 |
+
|
164 |
+
def calculate_surface_normal(depth_map):
|
165 |
+
kernel_size = 7
|
166 |
+
grad_x = cv2.Sobel(depth_map.astype(np.float32), cv2.CV_32F, 1, 0, ksize=kernel_size)
|
167 |
+
grad_y = cv2.Sobel(depth_map.astype(np.float32), cv2.CV_32F, 0, 1, ksize=kernel_size)
|
168 |
+
z = np.full(grad_x.shape, -1)
|
169 |
+
normals = np.dstack((-grad_x, -grad_y, z))
|
170 |
+
|
171 |
+
normals_mag = np.linalg.norm(normals, axis=2, keepdims=True)
|
172 |
+
with np.errstate(divide="ignore", invalid="ignore"):
|
173 |
+
normals_normalized = normals / (normals_mag + 1e-5)
|
174 |
+
|
175 |
+
normals_normalized = np.nan_to_num(normals_normalized, nan=-1, posinf=-1, neginf=-1)
|
176 |
+
normal_from_depth = ((normals_normalized + 1) / 2 * 255).astype(np.uint8)
|
177 |
+
normal_from_depth = normal_from_depth[:, :, ::-1] # RGB to BGR for cv2
|
178 |
+
|
179 |
+
return normal_from_depth
|
180 |
+
|
181 |
+
def process_image_or_video(input_data, task='depth', version='sapiens_0.3b'):
|
182 |
+
model, device = load_model(task, version)
|
183 |
+
if model is None or device is None:
|
184 |
+
return None
|
185 |
+
|
186 |
+
input_shape = (3, 1024, 768)
|
187 |
+
|
188 |
+
def process_frame(frame):
|
189 |
+
if isinstance(frame, Image.Image):
|
190 |
+
frame = np.array(frame)
|
191 |
+
|
192 |
+
if frame.shape[2] == 4: # RGBA
|
193 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
|
194 |
+
|
195 |
+
img = preprocess_image(frame, input_shape)
|
196 |
+
|
197 |
+
with torch.no_grad():
|
198 |
+
result = model(img.to(device))
|
199 |
+
|
200 |
+
depth_map = post_process_depth(result, (frame.shape[0], frame.shape[1]))
|
201 |
+
depth_image = visualize_depth(depth_map)
|
202 |
+
|
203 |
+
return Image.fromarray(cv2.cvtColor(depth_image, cv2.COLOR_BGR2RGB))
|
204 |
+
|
205 |
+
if isinstance(input_data, np.ndarray): # Video frame
|
206 |
+
return process_frame(input_data)
|
207 |
+
elif isinstance(input_data, Image.Image): # Imagen
|
208 |
+
return process_frame(input_data)
|
209 |
+
else:
|
210 |
+
print("Tipo de entrada no soportado. Por favor, proporcione una imagen PIL o un frame de video numpy.")
|
211 |
+
return None
|