Spaces:
Sleeping
Sleeping
File size: 916 Bytes
99740fe 659bfd7 99740fe 659bfd7 99740fe 659bfd7 99740fe 659bfd7 99740fe 659bfd7 f30a133 659bfd7 99740fe f30a133 99740fe 2ac0a7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import gradio as gr
import torch
from faster_whisper import WhisperModel
# Determine compute device and model size
device = "cuda" if torch.cuda.is_available() else "cpu"
compute_type = "float16" if torch.cuda.is_available() else "float32"
# Initialize the faster-whisper model
model = WhisperModel("tiny",
device=device,
compute_type=compute_type
)
def transcribe(audio):
# Transcribe audio using faster-whisper
segments, _ = model.transcribe(audio, language="yo")
# Combine all segments into one text
result = " ".join([segment.text for segment in segments])
return result
iface = gr.Interface(
fn=transcribe,
inputs=gr.Audio(sources=["microphone", "upload"], type="filepath"),
outputs="text",
live=True,
title="Speech-to-Text Demo",
description="Transcribe speech to text using the Whisper model."
)
if __name__ == "__main__":
iface.launch(share=True)
|