Spaces:
Sleeping
Sleeping
File size: 3,967 Bytes
0664e3a d911b56 0284190 0664e3a 0903305 0664e3a 0903305 0664e3a d3cdfaa 0664e3a 0903305 0664e3a 0903305 0664e3a 11372bf 0903305 0664e3a 0903305 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
import streamlit as st
from PIL import Image
from transformers import pipeline
import numpy as np
import cv2
import matplotlib.cm as cm
import base64
from io import BytesIO
st.set_page_config(layout="wide")
with open("styles.css") as f:
st.markdown('<style>{}</style>'.format(f.read()), unsafe_allow_html=True)
st.markdown("<h1 class='title'>Segformer Semantic Segmentation</h1>", unsafe_allow_html=True)
st.markdown("""
<div class='text-center'>
This app uses the Segformer deep learning model to perform semantic segmentation on <b style='color: red; font-weight: 40px;'>road images</b>. The Transformer-based model is
trained on the CityScapes dataset which contains images of urban road scenes. Upload a
road scene and the app will return the image with semantic segmentation applied.
</div>
""", unsafe_allow_html=True)
group_members = ["Ang Ngo Ching, Josh Darren W.", "Bautista, Ryan Matthew M.", "Lacuesta, Angelo Giuseppe M.", "Reyes, Kenwin Hans", "Ting, Sidney Mitchell O."]
st.markdown("""
<h3 class='text-center' style='margin-top: 0.5rem;'>
ℹ️ You can get sample images of road scenes in this <a href='https://drive.google.com/drive/folders/1202EMeXAHnN18NuhJKWWme34vg0V-svY?fbclid=IwAR3kyjGS895nOBKi9aGT_P4gLX9jvSNrV5b5y3GH49t2Pvg2sZSRA58LLxs' target='_blank'>link</a>.
</h3>""", unsafe_allow_html=True)
st.markdown("""
<h3 class='text-center' style='margin-top: 0.5rem;'>
📜 Read more about the paper <a href='https://arxiv.org/pdf/2105.15203.pdf' target='_blank'>here</a>.
</h3>""", unsafe_allow_html=True)
label_colors = {}
def draw_masks_fromDict(image, results):
masked_image = image.copy()
colormap = cm.get_cmap('nipy_spectral')
for i, result in enumerate(results):
mask = np.array(result['mask'])
mask = np.repeat(mask[:, :, np.newaxis], 3, axis=2)
color = colormap(i / len(results))[:3]
color = tuple(int(c * 255) for c in color)
masked_image = np.where(mask, color, masked_image)
label_colors[color] = result['label']
masked_image = masked_image.astype(np.uint8)
return cv2.addWeighted(image, 0.3, masked_image, 0.7, 0)
uploaded_file = st.file_uploader("", type=["jpg", "png"])
if uploaded_file is not None:
image = Image.open(uploaded_file)
col1, col2 = st.columns(2)
with col1:
st.image(image, caption='Uploaded Image.', use_column_width=True)
with st.spinner('Processing...'):
semantic_segmentation = pipeline("image-segmentation", f"nvidia/segformer-b1-finetuned-cityscapes-1024-1024")
segmentation_results = semantic_segmentation(image)
image_with_masks = draw_masks_fromDict(np.array(image)[:, :, :3], segmentation_results)
image_with_masks_pil = Image.fromarray(image_with_masks, 'RGB')
with col2:
st.image(image_with_masks_pil, caption='Segmented Image.', use_column_width=True)
html_segment = "<div class='container'><h3>Labels:</h3>"
for color, label in label_colors.items():
html_segment += f"<div style='display: flex; align-items: center; margin-bottom: 0.5rem;'><span style='display: inline-block; width: 20px; height: 20px; background-color: rgb{color}; margin-right: 1rem; border-radius: 10px;'></span><p style='margin: 0;'>{label}</p></div>"
buffered = BytesIO()
image_with_masks_pil.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
html_segment += f'<a href="data:file/png;base64,{img_str}" download="segmented_{uploaded_file.name}">Download Segmented Image</a>'
st.markdown(html_segment + "</div>", unsafe_allow_html=True)
html_members = "<hr><div style='display: flex; justify-content: center;'><h3>Group 6 - Members:</h3><ul>"
for member in group_members:
html_members += "<li>" + member + "</li>"
st.markdown(html_members + "</ul></div>", unsafe_allow_html=True)
|