import streamlit as st from PIL import Image from transformers import pipeline import numpy as np import cv2 import matplotlib.cm as cm import time import base64 from io import BytesIO st.set_page_config(layout="wide") with open("styles.css") as f: st.markdown(''.format(f.read()), unsafe_allow_html=True) st.markdown("

Segformer Semantic Segmentation

", unsafe_allow_html=True) st.markdown("""
This app uses the Segformer deep learning model to perform semantic segmentation on road images. The Transformer-based model is trained on the CityScapes dataset which contains images of urban road scenes. Upload a road scene and the app will return the image with semantic segmentation applied.
""", unsafe_allow_html=True) group_members = ["Ang Ngo Ching, Josh Darren W.", "Bautista, Ryan Matthew M.", "Lacuesta, Angelo Giuseppe M.", "Reyes, Kenwin Hans", "Ting, Sidney Mitchell O."] # model_versions = ["b1", "b2", "b3", "b4", "b5"] # selected_model_version = st.selectbox("Select a model version:", model_versions) st.markdown("""

ℹī¸ You can get sample images of road scenes in this link.

""", unsafe_allow_html=True) st.markdown("""

📜 Read more about the paper here.

""", unsafe_allow_html=True) st.markdown("Group Members:") for member in group_members: st.markdown("- " + member) semantic_segmentation = pipeline("image-segmentation", f"nvidia/segformer-b1-finetuned-cityscapes-1024-1024") new_file_uploaded = False uploaded_file = st.file_uploader("", type=["jpg", "png"]) label_colors = {} def draw_masks_fromDict(image, results): masked_image = image.copy() colormap = cm.get_cmap('nipy_spectral') for i, result in enumerate(results): mask = np.array(result['mask']) mask = np.repeat(mask[:, :, np.newaxis], 3, axis=2) color = colormap(i / len(results))[:3] color = tuple(int(c * 255) for c in color) masked_image = np.where(mask, color, masked_image) label_colors[color] = result['label'] masked_image = masked_image.astype(np.uint8) return cv2.addWeighted(image, 0.3, masked_image, 0.7, 0) col1, col2 = st.columns(2) if "uploaded_file" not in st.session_state: st.session_state.uploaded_file = None if uploaded_file is not None: st.session_state.uploaded_file = uploaded_file if st.session_state.uploaded_file is not None: image = Image.open(st.session_state.uploaded_file) col1, col2 = st.columns(2) with col1: st.image(image, caption='Uploaded Image.', use_column_width=True) while True: with st.spinner('Processing...'): segmentation_results = semantic_segmentation(image) image_with_masks = draw_masks_fromDict(np.array(image)[:, :, :3], segmentation_results) image_with_masks_pil = Image.fromarray(image_with_masks, 'RGB') with col2: st.image(image_with_masks_pil, caption='Segmented Image.', use_column_width=True) st.markdown("**Labels:**") for color, label in label_colors.items(): st.markdown(f"

{label}

", unsafe_allow_html=True) buffered = BytesIO() image_with_masks_pil.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode() href = f'Download Segmented Image' st.markdown(href, unsafe_allow_html=True) new_file_uploaded = False while not new_file_uploaded: time.sleep(1)