Spaces:
Runtime error
Runtime error
File size: 8,267 Bytes
7f2690b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import json
from random import shuffle, choice, sample
from moviepy.editor import VideoFileClip
import librosa
from scipy import signal
from scipy.io import wavfile
import torchaudio
torchaudio.set_audio_backend("sox_io")
INTERVAL = 1000
# discard
stft = torchaudio.transforms.MelSpectrogram(
sample_rate=16000, hop_length=161, n_mels=64).cuda()
def log10(x): return torch.log(x)/torch.log(torch.tensor(10.))
def norm_range(x, min_val, max_val):
return 2.*(x - min_val)/float(max_val - min_val) - 1.
def normalize_spec(spec, spec_min, spec_max):
return norm_range(spec, spec_min, spec_max)
def db_from_amp(x, cuda=False):
# rescale the audio
if cuda:
return 20. * log10(torch.max(torch.tensor(1e-5).to('cuda'), x.float()))
else:
return 20. * log10(torch.max(torch.tensor(1e-5), x.float()))
def audio_stft(audio, stft=stft):
# We'll apply stft to the audio samples to convert it to a HxW matrix
N, C, A = audio.size()
audio = audio.view(N * C, A)
spec = stft(audio)
spec = spec.transpose(-1, -2)
spec = db_from_amp(spec, cuda=True)
spec = normalize_spec(spec, -100., 100.)
_, T, F = spec.size()
spec = spec.view(N, C, T, F)
return spec
# discard
# def get_spec(
# wavs,
# sample_rate=16000,
# use_volume_jittering=False,
# center=False,
# ):
# # Volume jittering - scale volume by factor in range (0.9, 1.1)
# if use_volume_jittering:
# wavs = [wav * np.random.uniform(0.9, 1.1) for wav in wavs]
# if center:
# wavs = [center_only(wav) for wav in wavs]
# # Convert to log filterbank
# specs = [logfbank(
# wav,
# sample_rate,
# winlen=0.009,
# winstep=0.005, # if num_sec==1 else 0.01,
# nfilt=256,
# nfft=1024
# ).astype('float32').T for wav in wavs]
# # Convert to 32-bit float and expand dim
# specs = np.stack(specs, axis=0)
# specs = np.expand_dims(specs, 1)
# specs = torch.as_tensor(specs) # Nx1xFxT
# return specs
def center_only(audio, sr=16000, L=1.0):
# center_wav = np.arange(0, L, L/(0.5*sr)) ** 2
# center_wav = np.concatenate([center_wav, center_wav[::-1]])
# center_wav[L*sr//2:3*L*sr//4] = 1
# only take 0.3 sec audio
center_wav = np.zeros(int(L * sr))
center_wav[int(0.4*L*sr):int(0.7*L*sr)] = 1
return audio * center_wav
def get_spec_librosa(
wavs,
sample_rate=16000,
use_volume_jittering=False,
center=False,
):
# Volume jittering - scale volume by factor in range (0.9, 1.1)
if use_volume_jittering:
wavs = [wav * np.random.uniform(0.9, 1.1) for wav in wavs]
if center:
wavs = [center_only(wav) for wav in wavs]
# Convert to log filterbank
specs = [librosa.feature.melspectrogram(
y=wav,
sr=sample_rate,
n_fft=400,
hop_length=126,
n_mels=128,
).astype('float32') for wav in wavs]
# Convert to 32-bit float and expand dim
specs = [librosa.power_to_db(spec) for spec in specs]
specs = np.stack(specs, axis=0)
specs = np.expand_dims(specs, 1)
specs = torch.as_tensor(specs) # Nx1xFxT
return specs
def calcEuclideanDistance_Mat(X, Y):
"""
Inputs:
- X: A numpy array of shape (N, F)
- Y: A numpy array of shape (M, F)
Returns:
A numpy array D of shape (N, M) where D[i, j] is the Euclidean distance
between X[i] and Y[j].
"""
return ((torch.sum(X ** 2, axis=1, keepdims=True)) + (torch.sum(Y ** 2, axis=1, keepdims=True)).T - 2 * X @ Y.T) ** 0.5
def calcEuclideanDistance(x1, x2):
return torch.sum((x1 - x2)**2, dim=1)**0.5
def split_data(in_list, portion=(0.9, 0.95), is_shuffle=True):
if is_shuffle:
shuffle(in_list)
if type(in_list) == str:
with open(in_list) as l:
fw_list = json.load(l)
elif type(in_list) == list:
fw_list = in_list
else:
print(type(in_list))
raise TypeError('Invalid input list type')
c1, c2 = int(len(fw_list) * portion[0]), int(len(fw_list) * portion[1])
tr_list, va_list, te_list = fw_list[:c1], fw_list[c1:c2], fw_list[c2:]
print(
f'==> train set: {len(tr_list)}, validation set: {len(va_list)}, test set: {len(te_list)}')
return tr_list, va_list, te_list
def load_one_clip(video_path):
v = VideoFileClip(video_path)
fps = int(v.fps)
frames = [f for f in v.iter_frames()][:-1]
frame_cnt = len(frames)
frame_length = 1000./fps
total_length = int(1000 * (frame_cnt / fps))
a = v.audio
sr = a.fps
a = np.array([fa for fa in a.iter_frames()])
a = librosa.resample(a, sr, 48000)
if len(a.shape) > 1:
a = np.mean(a, axis=1)
while True:
idx = np.random.choice(np.arange(frame_cnt - 1), 1)[0]
frame_clip = frames[idx]
start_time = int(idx * frame_length + 0.5 * frame_length - 500)
end_time = start_time + INTERVAL
if start_time < 0 or end_time > total_length:
continue
wave_clip = a[48 * start_time: 48 * end_time]
if wave_clip.shape[0] != 48000:
continue
break
return frame_clip, wave_clip
def resize_frame(frame):
H, W = frame.size
short_edge = min(H, W)
scale = 256 / short_edge
H_tar, W_tar = int(np.round(H * scale)), int(np.round(W * scale))
return frame.resize((H_tar, W_tar))
def get_spectrogram(wave, amp_jitter, amp_jitter_range, log_scale=True, sr=48000):
# random clip-level amplitude jittering
if amp_jitter:
amplified = wave * np.random.uniform(*amp_jitter_range)
if wave.dtype == np.int16:
amplified[amplified >= 32767] = 32767
amplified[amplified <= -32768] = -32768
wave = amplified.astype('int16')
elif wave.dtype == np.float32 or wave.dtype == np.float64:
amplified[amplified >= 1] = 1
amplified[amplified <= -1] = -1
# fr, ts, spectrogram = signal.spectrogram(wave[:48000], fs=sr, nperseg=480, noverlap=240, nfft=512)
# spectrogram = librosa.feature.melspectrogram(S=spectrogram, n_mels=257) # Try log-mel spectrogram?
spectrogram = librosa.feature.melspectrogram(
y=wave[:48000], sr=sr, hop_length=240, win_length=480, n_mels=257)
if log_scale:
spectrogram = librosa.power_to_db(spectrogram, ref=np.max)
assert spectrogram.shape[0] == 257
return spectrogram
def cropAudio(audio, sr, f_idx, fps=10, length=1., left_shift=0):
time_per_frame = 1./fps
assert audio.shape[0] > sr * length
start_time = f_idx * time_per_frame - left_shift
start_time = 0 if start_time < 0 else start_time
start_idx = int(np.round(sr * start_time))
end_idx = int(np.round(start_idx + (sr * length)))
if end_idx > audio.shape[0]:
end_idx = audio.shape[0]
start_idx = int(end_idx - (sr * length))
try:
assert audio[start_idx:end_idx].shape[0] == sr * length
except:
print(audio.shape, start_idx, end_idx, end_idx - start_idx)
exit(1)
return audio[start_idx:end_idx]
def pick_async_frame_idx(idx, total_frames, fps=10, gap=2.0, length=1.0, cnt=1):
assert idx < total_frames - fps * length
lower_bound = idx - int((length + gap) * fps)
upper_bound = idx + int((length + gap) * fps)
proposal = list(range(0, lower_bound)) + \
list(range(upper_bound, int(total_frames - fps * length)))
# assert len(proposal) >= cnt
avail_cnt = len(proposal)
try:
for i in range(cnt - avail_cnt):
proposal.append(proposal[i % avail_cnt])
except Exception as e:
print(idx, total_frames, proposal)
raise e
return sample(proposal, k=cnt)
def adjust_learning_rate(optimizer, epoch, args):
"""Decay the learning rate based on schedule"""
lr = args.lr
if args.cos: # cosine lr schedule
lr *= 0.5 * (1. + math.cos(math.pi * epoch / args.epoch))
else: # stepwise lr schedule
for milestone in args.schedule:
lr *= 0.1 if epoch >= milestone else 1.
for param_group in optimizer.param_groups:
param_group['lr'] = lr
|